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Abstract

There has been a great deal of debate in the survey research community about the accuracy
of nonprobability sample surveys. This work aims to provide empirical evidence about the
accuracy of nonprobability samples and to investigate the performance of a range of post-
survey adjustment approaches (calibration or matching methods) to reduce bias, and lead to
enhanced inference. We use data from five nonprobability online panel surveys and com-
pare their accuracy (pre- and post-survey adjustment) to four probability surveys, including
data from a probability online panel. This article adds value to the existing research by
assessing methods for causal inference not previously applied for this purpose and dem-
onstrates the value of various types of covariates in mitigation of bias in nonprobability
online panels. Investigating different post-survey adjustment scenarios based on the avail-
ability of auxiliary data, we demonstrated how carefully designed post-survey adjustment
can reduce some bias in survey research using nonprobability samples. The results show
that the quality of post-survey adjustments is, first and foremost, dependent on the avail-
ability of relevant high-quality covariates which come from a representative large-scale
probability-based survey data and match those in nonprobability data. Second, we found
little difference in the efficiency of different post-survey adjustment methods, and inconsis-
tent evidence on the suitability of ‘webographics’ and other internet-associated covariates
for mitigating bias in nonprobability samples.
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It has become increasingly evident that traditional surveys face challenges in mea-
suring and understanding emerging and complex social issues, since they often
fail to accurately measure individual behavior, attitudes and perceptions on vari-
ous issues (Baker et al. 2010; Malhotra & Krosnick 2007; Tourangeau et al. 2014).
Recent notable failures of polls to predict the outcomes of referenda and elections
have shown that the way in which data are collected from the population must be
responsive to people’s dynamic lifestyles, choices, and attitudes (e.g., Goot 2021;
Kennedy et al. 2018; Wang et al. 2015). Further, the widespread availability of and
access to the internet and social media leads to a quick diffusion of ideas that may
rapidly shift social attitudes and behaviors (e.g., Wang et al. 2021).

Compared to traditional (probability-based) survey methods which usually
include offline data collection (mail, telephone, face to face (f2f)) and have been
proven to be inadequate to capturing new to emerge, quick to change events, web-
based surveys are advantageous given their convenience, quick turn-around times,
and relatively low respondent costs (Baker et al. 2013). Additionally, nonprobability
online panel surveys allow tests for consistency and reliability to be performed in a
timelier manner than telephone and interviewer administered surveys. While there
are web-based surveys that are probability-based (for instance push-to-web surveys
with a ‘population’ frame of emails (Cornesse et al. 2020)), the majority of online
surveys rely on being quick and efficient through reaching potentially millions of
internet users which comes at the expense of being representative of the population
(Bethlehem & Biffignandi 2012; Baker et al. 2013). We focus on nonprobability
online (web-based) panel' surveys in this research, although the findings can be
applied to other types of nonprobability surveys.

There are four main issues associated with nonprobability online panel sur-
veys, which are related to type of sampling, sampling frame, nonresponse, and
coverage. First, respondents are not selected based on probability sampling. Even
though they may be ‘randomly’ selected, it is often not possible to work out their
chance of being selected into the survey. Consequently, it is unknown what respon-
dents with a non-zero chance of being selected comprise the population that the
sample is selected from, and so the reliability of those sample survey estimates can-

1 Nonprobability online panels are also known as volunteer, opt-in or access online panels.
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not be assessed with confidence (Callegaro & DiSogra 2008b). This is associated
with the second issues, which is that there is no general population online sampling
frame for the internet (e.g., Couper 2000). While virtually all internet users have an
email address, there is no list comprising all of these email addresses that could be
used to draw a random sample. Third, online survey respondents have been found
to have different characteristics and behaviors to respondents from more traditional
surveys. Online surveys generally have higher levels of item and unit nonresponse
(e.g., Couper 2000; Daikeler et al. 2020), which has potential to introduce more
nonresponse bias. Four, the internet does not have universal coverage: in Australia
in early-2022, it was estimated that 9% of people did not use the internet (DataRe-
portal 2022)2. This can introduce (under)coverage error, since this lack of access is
concentrated amongst those of older age, rural location, Indigenous ethnicity, and
lower education levels. Those are groups which are increasingly important to poli-
cymakers, hence limiting the utility of internet-based surveys. Collectively, these
limitations mean that the data collected online with nonprobability panels are less
reliable than those gathered by traditional survey methods, since they are gener-
ally more prone to the above-mentioned sampling, nonresponse, and undercover-
age bias (which is, at the same time, challenging to estimate). Hence, the existing
evidence suggests that we cannot be confident that the results from nonprobability
panels accurately represent trends in the general population.

Our research aims are three-fold. First, we quantify the differences in survey
estimates obtained from the same survey administered through a probabilistic sam-
pling framework in contrast with those collected from a non-probabilistic frame-
work. Second, we compare and contrast the performance of different post-survey
adjustment methods on reducing bias in nonprobability-based online panel surveys.
Third, we compare how the inclusion of different external data sources (such as
Census) and covariates (such as non-demographics’) in post-survey adjustment
affect the accuracy of survey estimates. This investigation adds value to the existing
literature on approaches to mitigate bias in nonprobability surveys. As such, it pro-
vides valuable evidence to survey practitioners using samples from nonprobability
online panels of better quality (e.g., those with ESOMAR or ISO accreditation), as
well as survey researchers interested in implementing other types of nonprobability
surveys.

2 The last official statistics estimate for Australian households with no internet access at
home was from 2016-17, i.e., 14.0%. The same estimate for households without children
under 15 was even higher, i.e., 18.1% (Australian Bureau of Statistics 2018a).

3 We define non-demographics as attitudinal, behavioral, knowledge and factual ques-
tions that do not ask about person’s socio-demographic characteristics (see Yeager et al.
2011).
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Background and Literature Review

With probability sampling we ensure that every unit in the population has a known,
and non-zero, chance of being selected into the sample. This randomisation is a
key design attribute of probability sampling, and enables the calculation of stan-
dard errors, confidence intervals, and making generalized inferences regarding the
target population of interest from the sample (Hade & Lemeshow 2011). However,
while most (probability) surveys have known selection probabilities, whether peo-
ple respond cannot be controlled for, in spite of all the best efforts of survey practi-
tioners. Rivers (2013) argues that it is the probability of sample inclusion not selec-
tion that matters, since whether people cooperate in probability surveys cannot be
controlled for, and low response rates introduce skews similar to those in volunteer
panels. Trends of high nonresponse rates with a large proportion of probability-
based surveys reporting response rates of under 10% (Kennedy & Hartig 2019),
and the associated nonresponse biases may lead to flawed results and problems in
statistical inference (Baker et al. 2010; Baker et al. 2013). However, the fact that the
selection probabilities for a sample are unknown does not imply that they cannot be
estimated or adjusted for in a nonprobability sample, just as adjustments are used in
probability-based surveys to compensate for issues around coverage and response
(Rivers 2013).

Opportunities to Improve Accuracy of Nonprobability
Samples

There is a whole gamut of online nonprobability-based surveys, from the opt-in
click-through unsolicited surveys which are advertised on websites, to more struc-
tured recruitment of a panel of respondents; as a result of these idiosyncratic designs
which make it difficult to work out the rates of contact, response, and (non)coverage,
it is almost impossible to make reasonable statistical inferences from data obtained
with nonprobability-based surveys (Rivers 2013). However, the characteristics of
the nonprobability online panel sample may closely resemble the population being
studied and identifying the conditions under which valid statistical inferences can
be made using the realized sample is important (Mercer et al. 2017). This selection
bias - which leads to the sample misrepresenting the population - can be controlled
for using several different approaches, underpinned by an existing framework based
on causal inference used in numerous fields such as epidemiology, political science
and economics (Heckman 1979; Hug 2003; Rothman et al. 2008).

Valliant (2020) and Elliott and Valliant (2017) showed that it is not neces-
sary and sufficient that (i) every unit in the population has some probability of
being included in the sample, and that (ii) there is a structural model based on the
observed sample which can be used to describe the variables we are interested in
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measuring, meaning that you do not need both conditions to hold. This implies
that reweighting or matching schemes can be used to (a) estimate the probability of
response and (b) calibrate to known benchmark population totals, to correct for any
selection biases in the estimates derived from nonprobability sample surveys (Matei
2018). We distinguish between matching approaches and reweighting approaches,
and the key goal of both approaches is to ensure that there is no (or little) bias in
the observed data, meaning that the empirical distribution of the observed data is
similar to the population (Baker et al. 2013; Elliott & Valliant 2017; Mercer et al.
2017; Mercer et al. 2018; Valliant 2020).

Post-Survey Adjustments in Nonprobability Samples

Post-survey adjustments correct for the unequal probabilities of selection and are
common in both nonprobability and most probability surveys: virtually no prob-
ability sample uses simple random sampling. As such, in both probability and non-
probability samples, the objective for inference is to ensure that the composition
of the sampled units with respect to the observed characteristics either matches or
can be adjusted to match the population of interest. Post-survey adjustments have
the dual purpose of reducing the bias and producing more accurate population esti-
mates (Elliott & Valliant 2017; Mercer et al. 2017).

There are several approaches which have been proposed to improve accuracy
and inference for data collected under a nonprobability sample. These approaches
are predicated from the issues facing probability samples caused by differences in
response and coverage of surveys. To cope with these issues, statistical adjustments
typically correct for any systematic biases, including in nonprobability samples
(Cornesse et al. 2020; Elliott 2009; Lehdonvirta et al. 2021; Rivers 2007).

This study compares six primary methods of reweighting and matching sur-
vey data: raking, generalized regression estimation (GREG), propensity score
weighting (PSW), multilevel regression and poststratification (MRP), Mahalano-
bis distance matching (MDM) and coarsened exact matching (CEM). Reweighting
methods directly adjust the sample distribution to the target population distribu-
tion, to achieve the desired sample composition in the presence of nonresponse and/
or other factors. Matching methods attempt to create a balanced nonprobability
sample which closely resembles the characteristics of a probability sample from
the ‘true’ population (when compared with a selected array of auxiliary, often non-
demographic, characteristics) (Bethlehem 2016; Cornesse et al. 2020). Assessing
performance of different post-survey adjustment methodology is important as all
methods come with certain limitations — for example, raking was reported to be
less effective to mitigate bias in nonprobability online panel samples than in prob-
ability samples (Mercer et al. 2018), the GREG estimator becomes less precise the
larger the number of benchmarks (Deville et al. 1993), MRP requires knowledge
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of the joint distribution of the poststratification variables in the target population
(Deville & Sarndal 1992), and matching methods cannot be used with all types of
data.

In the next paragraphs, we provide more information about each of the post-
survey adjustment methods investigated in this study.

Raking

Raking, also known as iterative proportional fitting, is the most common weighting
method and is simple to implement as it relies on knowing the marginal distribution
of population covariates. As part of the procedure, the weights for each individual
are repeatedly adjusted until the sample distribution is perfectly aligned with the
population distribution for the selected set of variables. As the utility of a large set
of weighting covariates diminishes, using key socio-demographic variables is often
sufficient to reduce the selection bias in probability samples (Kalton & Flores-Cer-
vantes 2003).

Generalized Regression Estimation (GREG)

Generalized regression estimation (GREG) is a calibration® approach where the
sampling weights are adjusted to make certain the survey estimators match to the
set of known population totals (benchmarks). In contrast to raking which repeatedly
reweights the sample to the marginal distributions of the known population totals,
the GREG estimator is based on the minimizing the distance measure between
the sample and the benchmark information and it is supposedly more efficient and
provides more accurate population estimates (Deville & Siarndal 1992).

Propensity Score Weighting (PSW)

In the simplest version of probability-based sampling, survey respondents are
assumed to have a non-zero chance of being included in the sample and weighting
each sample individual by the inverse of its sample selection probability removes
any selection bias (Cochran 1977). When data are collected through a nonprobabil-
ity-based sample, we can use the same ideas, and although selection probabilities
from a nonprobability sample are unknown, it does not mean that they cannot be
estimated (Rivers 2013). In PSW, a synthetic population assumed to “represent” the
full target population is created by using external high-quality data representative
of the population. Then pseudo-inclusion probabilities are estimated using binary
(i.e., probit or logistic) regression modeling, which leads to a probability-based (or

4  Calibration is a general framework for weighting in which the following conditions for
adjustment weights have to be satisfied: (1) the weights have to be as close to 1 as possi-
ble, (2) after calibration, the sample distribution of the auxiliary variables should match
the population distribution (Bethlehem 2008). Deville et al. (1993) distinguish between
complete post-stratification, generalized raking, and GREG as calibration methods.
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synthetic) reference sample which is combined with the nonprobability sample
(Schonlau & Couper 2017; Valliant 2020). Like in calibration, PSW is efficient in
bias reduction if the weighting variables and the propensity of response in the non-
probability sample are (strongly) associated with outcome variables (Rosenbaum &
Rubin 1983; Valliant & Dever 2011).

Multilevel Regression and Poststratification (MRP)

The MRP approach (Gelman 2007; Gelman & Little 1997) is based on assuming
the existence of a super-population model which can be fitted to the analytic survey
variables and can be used to project the observed sample to the full population. The
key assumption here is that sampled and non-sampled data are driven by an under-
lying model (for the analysis variables) and this model can be revealed by analyz-
ing the sample responses. In the presence of nonresponse, this model also speci-
fies the relationship between the observed units and the unobserved data (Brick
2013). Poststratification, which includes creating a set of post-strata and estimating
the mean value by fitting mixed effects (multilevel) model in the case of MRP,
requires knowledge of the joint distribution of the poststratification variables in
the target population unlike other reweighting methods (Deville & Sérndal 1992),
except for interactions between covariates. In political science, this approach is use-
ful in obtaining state-level predictions based on relatively small national samples
(for example, Bon et al. 2019; Park et al. 2004; Park et al. 2006; Wang et al. 2015).

Mahalanobis Distance Matching (MDM)

MDM is a distance matching method which creates groups containing one or more
observations from both the reference sample and the nonprobability sample that are
similar on a set of auxiliary variables believed to be associated with the probability
of selection. In MDM, we measure the distance between a pair of observations, y;
and y;, with the Mahalonobis distance calculated as presented in Equation 1:

M) = 0= )51 - ) 0

where S is the sample covariance matrix of y. Two observations are matched if they
have the minimum distance out of a set of pairs, e.g., through nearest neighbour
matching. Since the population of possible match-pairs exponentially increases as
the nonprobability sample size increases, usually some procedure is used to remove
pairs that are unreasonably distant through defining calipers which are chosen cut-
offs for which the maximum distance is allowed (Stuart & Rubin 2008).
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Coarsened Exact Matching (CEM)

Coarsened exact matching (CEM) is a matching method like the MDM, but the
key difference is that it is a stratification-based method (Sizemore & Alkurdi 2019),
and calipers are not required to remove unreasonably bad matches (lacus et al.
2011). In CEM, units with the same values of the selected covariates (in contract
to exact matching, they can be coarsened, i.e., recategorized into fewer groups) are
placed in a single stratum. Within each stratum, the units in the nonprobability
sample are weighted to be equal to the number of units in the reference sample.
Strata without at least a single nonprobability sample or reference sample unit, are
given a zero weight which effectively prunes them from the dataset. By removing
unmatched units, the inference is generally improved because it achieves a better
balance between the empirical distributions of reference sample and the nonprob-
ability sample (Iacus et al. 2009; Stuart 2010).

Scope of this Study

Following from Mercer et al. (2017), we use the general framework which empha-
sizes the characteristics of the realized sample (regardless of how it was gener-
ated), and therefore correct for any self-selection bias in survey inference (Groves
2006; Keiding & Louis 2016; Little & Rubin 2002). The authors identify three com-
ponents that determine whether the presence of self-selection ultimately leads to
biased survey estimates: exchangeability, positivity, and composition (Mercer et al.
2017). These components of self-selection bias are not fundamentally different for
nonprobability samples, but what differs between probability and nonprobability
samples are the underlying assumptions which lead to individuals becoming mem-
bers of nonprobability samples (Kennedy et al. 2016; Maclnnis et al. 2018; Pfef-
fermann et al. 2015).

Notwithstanding, this can be useful in investigating if there is (a) improved
inference of sample data from a nonprobability survey, and (b) through compar-
ing different post-survey adjustment methods under different external data sources
scenarios we can ascertain their suitability/performance under various conditions.
There have been a number of authors — for instance, DiSogra et al. (2011), Baker et
al. (2013), Mercer et al. (2017), Mercer et al. (2018), and Valliant (2020) — who have
undertaken similar research into the performance of different methods, and also
discussed the requirements with respect to the external data sources for the various
approaches.

Therefore, we will examine a range of survey estimates against two catego-
ries of population benchmarks: secondary demographics (such as citizenship and
employment status), and non-demographics (such as alcohol consumption and life
satisfaction), as well as against both categories combined. First, we compare the
accuracy of probability and nonprobability samples from two Australian survey
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projects, by presenting updated evidence. Second, we investigate the performance
of different post-survey adjustments to improve accuracy of nonprobability sam-
ples. We do that under four realistic scenarios which differ in terms of the nature of
the auxiliary data that is available for use in post-survey adjustment for nonprob-
ability surveys. The scenarios under which we are assessing performance of adjust-
ment methods are the following:

= Scenario 1 — availability of census aggregated statistics utilized to improve
accuracy in nonprobability samples
Under this scenario, aggregated® population census data matching to primary
demographics® from a nonprobability sample are used to adjust the sample dis-
tribution for those key auxiliary variables to match the population distribution
(e.g., for sex, age, and education).

= Scenario 2 — availability of additional census aggregated statistics utilized to
improve accuracy in nonprobability samples
Under this scenario, aggregated population census data matching to primary
and, additionally, secondary demographics’ from a nonprobability sample are
used to adjust the sample distribution for those selected auxiliary variables to
match the population distribution (e.g., besides for sex, age, and education,
employment status covariate can be included in the post-survey adjustment).

= Scenario 3 — availability of census aggregated statistics and a representative
source of non-demographic benchmarks (i.e., a large national survey) utilized
to improve accuracy in nonprobability samples
Under this scenario, besides the aggregated population census data from Sce-
nario 1, we can use secondary demographics and non-demographics from a
large probability-based national survey (e.g., household composition and health
status from a government survey on health) that are matching to those covariates
in the nonprobability sample. This time, microdata® are a source of secondary
demographics and non-demographics.

5 Aggregated or tabular data are produced by grouping information into categories.
Within these categories, values are combined (e.g., a count of respondents of particular
age). They are also known as macrodata (Australian Bureau of Statistics n.d.-b).

6 Primary demographics as defined by Pennay et al. (2018) are socio-demographic vari-
ables which were used in post-stratification weighting.

7  In contrast to primary demographics, secondary demographics as defined and used
by Pennay et al. (2018) were additional socio-demographic variables which were not
included in post-stratification weighting but rather in accuracy calculations only (such
as Indigenous status or voluntary work).

8  Microdata, also known as unit record files, are a type of data including unit records
containing detailed information about analytical units such as persons or organiza-
tions. They often include individual responses to survey questions or from administra-
tive forms (Australian Bureau of Statistics n.d.-b).
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= Scenario 4 — availability of census aggregated statistics, and a smaller scale
probability-based survey data utilized to improve accuracy in nonprobability
samples
Under this scenario, besides the aggregated population census data from Sce-
nario 1, we can use non-demographics from a smaller-scale non-government
survey that are matching to selected covariates in the nonprobability sample.
While we apply a less representative external data source to improve accuracy,
there are additional non-demographic covariates which could be used to balance
the samples as noted in the literature. An example of those non-demographics
is ‘webographic’ variables, which are available in a microdata form. Webo-
graphic variables are attitudinal or lifestyle variables accounting the difference
between web survey participants and those who do not do surveys online (Baker
et al. 2013). Different authors considered different questions as ‘webographic’
questions, such as: feeling alone, eagerness to learn new things, willingness to
take chances, lifestyle questions (on travelling, participation in sports, reading
a book), opinions on what is a violation of privacy, knowing a ‘lesbian, gay,
bisexual, transgender, and queer or questioning’ (LGBTQ) person (Schonlau et
al. 2007), early-adopter items (DiSogra et al. 2011; Dutwin & Buskirk 2017) or
media use (Baker et al. 2013). On the other hand, Mercer et al. (2018) used politi-
cal attitude variables in post-survey adjustments. In our study, besides early-
adopter items, we also consider internet connection, access and use, and number
of surveys completed as ‘webographic’ variables or, simpler, ‘webographics’
(see Table 10 in the Appendix for more information).

The difference between Scenarios 3 and 4 is the type and the source of auxiliary
survey data available for post-survey adjustment. Under Scenario 3, we have access
to a large-scale nationally representative survey (large sample, e.g., 20,000+, with
higher accuracy), such as the National Drug Strategy Household Survey. Under
Scenario 4, we can use a smaller probability-based sample (e.g., about n=600), but
with an ability to collect tailor-made data including key covariates which could help
mitigate bias after matching or propensity scoring weighting (e.g., ‘webographics’);
data collectors attempting to improve the accuracy of their nonprobability samples
could conduct a smaller-scale probability-based survey, e.g., a probability-based
sample from Online Panels Benchmarking Study, to improve inference in opt-in
panel samples.

This study will address the following research question: How accurate are
nonprobability online samples in comparison to probability samples and to what
extent can inference be improved by using post-survey adjustment methods under
different scenarios?
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Methods
Data

Original Online Panel Benchmarking Study (2015 OPBS)

The 2015 Online Panels Benchmarking Study (OPBS, Pennay et al. 2016°) was
conducted in June 2015 and administered the same questionnaire to eight samples,
made up of three probability samples and five nonprobability online panel samples.
Each sample aimed to achieve approximately six hundred completed interviews; in
the end, the smallest sample comprised of 538 respondents (Pennay et al. 2018), as
presented in Table 1. The design was similar to the US study by Yeager et al. (2011)
which compared the accuracy of seven online samples and two probability samples.
The main objective of OPBS was to inform the debate in Australia on the issues
pertaining to inference from nonprobability online panel surveys.

Life in Australia™ - Probability-Based Online Panel:
OPBS Replication (2017 OPBS)

Life in Australia™ is a probability-based internet panel for the Australian general
adult population, and in January-February 2017, all active Life in Australia™ pan-
ellists were asked to participate in the replication of the OPBS. Social Research
Centre administered the same questionnaire used for the original 2015 OPBS to
determine the accuracy of their probability-based online panel (Kaczmirek et al.
2019). This was the second wave of Life in Australia, referred to as the Online
Panel Benchmarking Study Replication or 2017 OPBS (Pennay & Neiger 2020'°).

Life in Australia™ panellists were recruited in 2016 via their landline or
mobile phones to take part in incentivized monthly surveys, and the final sample of
registered panellists was 3,322 individuals (overall recruitment rate, AAPOR RR3:
15.5%). Since the recruitment of panellists was through probability-based dual-
frame sampling, the results from the surveys are generalizable to the Australian
population. Life in Australia™ is a mixed-mode probability online panel, and to
take into account the population with no access to the internet, the study also con-
tacted panel members who happened to be offline via phone (representing 13.6% of
Wave 2 sample) (Kaczmirek et al. 2019).

Population, Sampling and Samples

Both the 2015 and 2017 OPBS surveys collected information from an in-scope
population of all Australians aged 18 years and over. The studies were carefully
designed to assess accuracy of nonprobability online panel samples relative to prob-

9  Data DOI: 10.4225/87/FSOYQI
10 Data DOI: 10.26193/YF8AF1
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ability-based surveys using different probabilistic sampling methodology through
applying the same data collection instrument to provide data on the demographic,
social characteristics and wellbeing of people in Australia (Kaczmirek et al. 2019;
Pennay et al. 2018).

As previously explained, the OPBS 2015 study data comprised of eight sam-
ples, three of which were probability-based samples: (i) an address-based sampling
(A-BS) survey with Geocoded National Address File (G-NAF) as a sampling frame
(survey mode: hard copy/mail, online, telephone), (ii) a standalone dual-frame Ran-
dom Digit Dialing (RDD) survey sample (survey mode: telephone), and (iii) a RDD
end-of-survey recruitment sample (survey mode: telephone, online, hard/copy)
(Pennay et al. 2018), also known as ‘piggybacking’ survey sample (Tourangeau
& Smith 1985). For the purpose of the 2015 OPBS study, five Australian nonprob-
ability online panels collected data from about 600 of their panellists each. Four of
five nonprobability online panels complied with all ESOMAR’s questions to help
online research buyers'' and three of the five were with ISO 26362 accreditation'
(Pennay et al. 2018). We will analyze accuracy of the whole nonprobability sample
combined" (n=3,058) and for two purposely selected nonprobability samples, the
most and the least accurate.

The OPBS Replication 2017 survey comprised of one probability-based mixed-
mode (online and telephone) sample. The cumulative response rate (CUMRRI),
which is a product of overall recruitment (RECR x PROR) and survey completion
rates (COMR)", was 12.2% (AAPOR RR3). A total of 2,580 Life in Australia™
panellists completed Wave 2 questionnaire (Kaczmirek et al. 2019).

11 ESOMAR’s Questions to help buyers of online samples include questions on company
profile (such as What experience does your company have in providing online samples
for market research?), sample sources and recruitment (such as Is the recruitment pro-
cess ‘open to all’ or by invitation only?), sampling and project management (such as
Do you employ a survey router or any yield management techniques?), data quality
and validation (such as How often can the same individual participate in a survey?),
policies and compliance (such as How can participants provide, manage and revise
consent for the processing of their personal data?) and metrics (Which of the following
[metrics] are you able to provide to buyers, in aggregate and by country and source?).
For more information, see ESOMAR (2021).

12 ISO 26362:2009 developed criteria and specified terms, definitions and service re-
quirements for organisations managing online panels, including on sampling, field-
work, and data management. It has since been revised by ISO 20259:2019 standard
(International Organisation for Standardisation 2022).

13 Combining data from several volunteer panels can increase their overall accuracy (Cor-
nesse et al. 2020), can be thus considered a solution to mitigate representation bias in
nonprobability surveys, and is as such a subject of this study. We were particularly in-
terested in the effectiveness of post-survey adjustment on combined data from different
nonprobability sources, in comparison to individual volunteer panel samples.

14 Recruitment rate, completion rate, and cumulative response rate were introduced by
Callegaro and DiSogra (2008a) for calculation of response rates in online panels.
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Table 1  Studies and subsamples analyzed

Study Subsample Response rate (AAPOR RR3) n2
Address-based sampling 26.2% 538
Standalone RDD 14.7% 600
.70
Online Panels (dual-frame)
Benchmarking Study RDD “piggybacking” 0.8% 560
(2015 OPBS) (dual-frame) 0%
5 volunteer panel .
samples? 2.6%-15.4% 3,058
. recruitment rate: 15.5%,

Online PanE.:IS e . Wave 2 survey completion
Benchmarking Study Life in Australia™ rate: 78.6% 2580
. . : .07, N
Replication Wave 2 cumulative response rate:

(2017 OPBS) 12.2%
. (4

2 We have to acknowledge the fact that with relatively small sample (n=about 600),
sampling variance as a component of sampling error is larger. In practice this means
that estimates from surveys with smaller samples can be less accurate in benchmarking
studies by chance in comparison to those from larger surveys.

b Besides the combined nonprobability sample, we will analyze data separately for the
most accurate panel (Panel 3, n=601) and the least accurate panel (Panel 1, n=601)
(based on the results from Kaczmirek et al. 2019, p. 25). We will not analyze data for all
5 nonprobability panels separately due to space constraints. However, through comparing
the best and worst performing nonprobability panel, we can get an indication of the
variation in the bias and accuracy of different panel providers.

¢ For nonprobability samples, response rates cannot be calculated and some authors (e.g.,
Pennay et al. 2018) report sample yields instead.

Generally speaking, there were notable differences in response between the
subsamples listed in Table 1, which might result in different levels of nonresponse
error. The hope is that we can mitigate against this in our analysis through effective
post-survey adjustment procedures applied to nonprobability data.

Benchmarks

Assessing quality in surveys requires an objective standard to which the survey
estimates can be compared, such as population benchmarks. Differences between
estimates from survey response and population benchmarks can occur through bias
or variance, where the bias term captures the systematic (selection) errors that are
shared by nonprobability samples. The variance term captures the sampling varia-
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tion and accounts for the variation due to the differences in survey protocols, statis-
tical modeling or weighting adjustments.

To replicate benchmarking analysis from Pennay et al. (2018)"° and Kaczmirek
et al. (2019), we use the same benchmarks but from updated data sources collected
closer in time to 2015 OPBS and 2017 OPBS studies. We primarily use information
from the Australian quinquennial Census (Australian Bureau of Statistics 2016) as
benchmarks since censuses offer universal coverage of the population by definition.
For some instances we use administrative record data and information drawn from
large government surveys as benchmarks. Those are electoral registration informa-
tion from the Australian Electoral Commission, and social and health character-
istics from the government funded surveys which are considered as the best qual-
ity sources of nationally representative benchmarks in Australia with the highest
validity (e.g., Australian Bureau of Statistics 2018b).

Benchmarks will be divided into primary (for post-survey adjustment only),
secondary demographics, and substantive items (see Pennay et al. 2018). Table 2
provides a description of the benchmarks used in the study.

15 The findings presented in Pennay et al. (2018) were further explored and published by
Lavrakas et al. (2022).
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Data Analysis

Benchmarking Analysis

To carry out our benchmark analysis, we need to balance against variance and bias
in the final estimates. There are a wide variety of measures estimating the bias,
such as the number of statistically significant differences from the benchmarks,
the average absolute error (AAE) (including measures of uncertainty of the AAE,
such as the standard deviation of the AAE or the range and ranking) (see Dutwin
& Buskirk 2017; Maclnnis et al. 2018; Yeager et al. 2011). To provide a measure
of the variance, we compute the mean squared error which is a function of both
the bias and the variance, and as such it is a good measure of the overall accuracy
of the different approaches; it is usual practice to take the square root of the mean
square error (RMSE) which is more sensitive to large errors than AAE. The aim of
the study is to find the approach which is robust under the different scenarios. As
such we present results using the AAE and RMSE to give an absolute measure of
the error and the variability measure of the error, respectively.'®

The AAE was used by Yeager et al. (2011) to compare impact of different
weighting approaches for probability and nonprobability surveys in the US. The
same measure was used by Pennay et al. (2018) and Kaczmirek et al. (2019), who
replicated the study design in Yeager et al. (2011) for Australia.

Our study follows all three of these previous studies, and the AAE is calcu-
lated as presented in Equation 2:

AAE =y, Pl @)

where ¥, is the j-th estimate (of a survey item) and y; is the value for a correspond-
ing (population) benchmark. And similarly, the RMSE is computed as presented in
Equation 3:

_ 2
Z;‘:l(yl_yj)
k

RMSE = 3)

where k is the number of benchmarks, y, is again the j-th estimate from either
OPBS surveys, and y; is the value for a corresponding benchmark. In our study, the
estimates (¥)) represented proportion estimates for modal response for items with
corresponding benchmarks; this is consistent with the approach from the Austra-
lian benchmarking studies (Kaczmirek et al. 2019; Pennay et al. 2018) and the US
studies described in the literature (e.g., Yeager et al. 2011).

16 When we computed Relative Absolute Bias (see Dutwin & Buskirk 2021) as a relative
measure, we reached the same conclusions about the accuracy of probability and non-
probability samples as when computing AAE as an absolute measure.
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To explore the generalizability of these findings, we calculate AAE and RMSE
for 12 secondary demographics, 6 substantive items, and all 18 survey items with
corresponding benchmarks combined. Most probability and nonprobability sur-
veys apply adjustment for primary benchmarks as a standard approach, and for the
majority of surveys the differences between the sample and population for primary
benchmarks is expected to be minimal (Cornesse et al. 2020; Mercer et al. 2017).
The analysis was facilitated by the statistical coding environment and language
R (R Core Team 2020) to carry out all data processing, post-survey adjustments,
imputation of missing values'’ and benchmarking analyses. Besides R base or stats
packages, the following packages were used: Hmisc (for data processing, Harrell et
al. 2020), missForest (for imputation of missing values, Stekhoven 2013), fastDum-
mies (to create dummy variables for MDM, Kaplan 2020), anesrake (to perform
raking, Pasek 2018), sjstats (for data processing, Liidecke 2020), questionr (for data
processing, Barnier et al. 2020), MatchingFrontier (to perform MDM, King et al.
2015), cem (to perform CEM, lacus et al. 2020), and rstanarm (to conduct domi-
nance analysis, Goodrich et al. 2020).

Post-Survey Adjustment Approaches and Parameters

Methods. To improve inference in nonprobability samples, we will test a number of
post-survey adjustment methods and techniques:

= raking

= generalized regression estimation (GREG)

= multilevel regression and poststratification (MRP)

= coarsened exact matching (CEM)

= Mahalanobis distance matching (MDM)

= propensity score weighting (PSW).

PSW, MDM and CEM selection/weighting will be later adjusted to match primary
demographic benchmarks from Australian Census 2016. This means that those
methods will be combined with raking not to introduce bias due to any socio-
demographic sample imbalance after the initial adjustment. For more information
about each of these methods, see Subsection 2.2, and for post-survey adjustment
details from this study, see Table 3.

17 We imputed missing values using random forest imputation algorithm, which is suit-
able for both continuous and categorical variables. Missing values were imputed for
calibration and matching purposes only, and not for estimation, which means that only
valid values of items with corresponding benchmarks were used in calculations of esti-
mates.

18 In probability samples, a two-stage process can be used for weighting, first calculating
a design weight (for the unequal probability of sample members being selected) and
second raking (to reduce possible nonresponse). As the same process cannot be used
for weighting nonprobability samples, and as the findings on the accuracy of nonprob-
ability samples would not change (see Kaczmirek et al. 2019), we used a consistent
one-stage raking approach across all samples (and calibration methods).
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Based on the literature review from Subsection 2.2, we selected all post-survey
adjustment methods appropriate for use with particular types of data. While raking,
GREG and MRP can be used with tabular data and estimates from survey micro-
data (or both at the same time), weighting schemes should include estimates from
nationally representative data sources producing known population totals (Kalton
& Flores-Cervantes 2003, p. 82); hence, raking, GREG and MRP are not analyzed
under Scenario 4, i.e., with a smaller scale probability survey data producing rough
estimates of population totals. Also, a disadvantage of MRP is the requirement of
the joint distribution of the poststratification variables, and CEM, MDM and PSW
can only be used with microdata, i.e., under Scenarios 3 and 4.
Covariates. The theory explains that the selection of covariates for post-
survey adjustment should be based on the relationship with nonresponse and non-
coverage (e.g., Battaglia et al. 2009). Kalton and Flores-Cervantes (2003) pointed
out that the precision of estimates can be increased by benchmarking to external
sources with covariates that are closely related to key survey variables. The litera-
ture on post-survey adjustment in nonprobability samples (e.g., Dutwin & Buskirk
2017) suggests using covariates that are associated with participation in nonprob-
ability samples/online panels, in attempt to primarily reduce errors associated with
coverage, and adjust for inherent selection bias. We will follow these general rec-
ommendations/principles by:
= selecting secondary demographic covariates with the largest absolute error rel-
ative to Census benchmarks under Scenario 2 — our assumption is that those
socio-demographic differences are directly associated with undercoverage (and
nonresponse) bias in nonprobability online panels;

= selecting all matching health-related items (besides a secondary demographic
item) to reduce error of other health-related items under Scenario 3 — if adjust-
ment covariates are closely related to the target outcome variables, bias could be
mitigated

= selecting non-demographic covariates which were previously discussed in the
literature as effective in reducing coverage error in non-probability samples, so-
called ‘webographic’ variables, under Scenario 4;

= identifying a limited number of ‘webographic’ covariates which distinguish
nonprobability and probability samples the most, to be used with CEM under
Scenario 4.

At the same time, validity of the sample has to be preserved by including core
demographics like age and gender; in the case of calibration, we also have to have
in mind that selecting too many covariates can lead to significant variance inflation
and inability for raking algorithm to converge (Battaglia et al. 2009).
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For details on the final selection of covariates, applied with different methods
and under different scenarios, please see Final selection of post-survey adjustment
covariates section and Table 10 in the Appendix.

Results
Accuracy of Nonprobability Online Panels

The results in this section provide updated evidence regarding the accuracy of non-
probability online samples in comparison to probability samples (with more recent
benchmarks, for original results see Kaczmirek et al. 2019). We will use the identi-
fied gap in accuracy as a reference for assessment of effectiveness of post-survey
adjustments (see Section 4.2).

Table 5 presents the results on the accuracy of OPBS 2015 and OPBS 2017
Replication surveys. The results confirm the findings from Pennay et al. (2018) and
Kaczmirek et al. (2019) on the accuracy of nonprobability-based online panels in
comparison to probability samples, as well as that raking as a post-survey adjust-
ment method improves the quality of estimates from probability surveys more
effectively than for nonprobability-based online panels. While nonprobability panel
samples are similarly accurate in measuring secondary demographics as probabil-
ity samples (AAE: nonprobability samples 4.7-5.4, probability samples 4.2-5.3, all
raked), they are less accurate in measuring non-demographics than probability sur-
veys (AAE: nonprobability samples 6.6-9.9, probability samples 3.7-5.4, all raked),
which is also confirmed by RMSE measures. We would particularly like to reduce
the non-demographic bias with various post-survey adjustments.

Assessment of Effectiveness of Post-Survey Adjustment
Methods for Improving Inference in Nonprobability
Samples

In this section, we will show if the difference in accuracy between probability and
nonprobability samples, i.e., representation bias, can be reduced using different
post-survey adjustment methods. The results will be presented by scenarios based
on the availability of external data and, as previously explained, not all methods
can be used with all data types. Importantly, we will use Life in Australia™ Wave 2
sample as a reference sample for post-survey adjustment efficiency. This sample has
been selected as it is similarly accurate as the OPBS 2015 probability samples (see
online Appendix Table 5), yet with a much larger sample size (smaller sampling
variance) and greater comparability with nonprobability samples in terms of the
survey mode (online: 86.4% in Life in Australia™ Wave 2, 100% in volunteer sam-
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ples). We will use AAE for the raked" Life in Australia™ sample, and no further
post-survey adjustment will be carried out with this probability sample. Fundamen-
tally, we will assess (i) the efficiency of post-survey adjustments with nonprobabil-
ity samples relative to (ii) the accuracy of probability-based online panel estimates
normally reported in practice (i.e., calibrated using primary demographics).

Scenario 1: Availability of Census Aggregated Statistics, and Only
Primary Demographics were Collected from the Nonprobability
Sample

To illustrate the effectiveness of post-survey adjustments (i.e., raking, GREG and
MRP) using primary demographics (i.e., performing ‘basic calibration’), we are
presenting results for unweighted and weighted data for the nonprobability online
samples in Figure 1 (see Table 6 from the Appendix for more detailed results). The
presented evidence shows how basic weighting post-survey adjustments improve
the quality of estimates, but the improvement is only slight on average (AAE com-
bined reduction between 0.4 [GREG, Panel 3] and 0.7 [MRP, Panel 1]). We can con-
firm our previous finding on how raking improves the accuracy of nonprobability
samples to a lesser extent than those from probability samples. We can also extend
this finding to other calibration methods studied in this article - GREG and MRP.

The improvement in accuracy is more apparent for all 18 survey items com-
bined than for six substantive items combined, which indicates that calibration
using primary demographic more consistently improves the quality of secondary
demographic estimates than non-demographic estimates. Moreover, the results
from Figure 1 show how calibration can deteriorate substantive item estimates from
nonprobability samples, especially the least accurate one, but also the combined
volunteer panel sample. This is consistent across all calibration methods, with
MRP performing just slightly better than GREG and raking. On the other hand,
weighting improved accuracy of the most accurate nonprobability panel in a simi-
lar fashion for both secondary demographics and non-demographics.

We have to note that the differences in item-level results (not only at the AAE
level, see Table 6 in the Appendix) are almost non-existent for raking and GREG
and very little between the first two calibration methods and MRP. Based on this
finding, as well as due to the limitations of MRP (i.e., requiring a joint distribution),
we will only assess the efficiency of the first two calibration methods under Sce-
nario 2. Also, the results for basic raking from Scenario 1 are included as a refer-
ence method for Scenarios 2, 3 and 4 (see Figures 2, 3 and 4).

19 By gender, age group*education (interaction), country of birth, state*capital city in
state (interaction)
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AAE combined (percentage points) AAE substantive items (percentage points)
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W Unweighted M Basic raking Basic GREG [ MRP W Unweighted M Basic raking Basic GREG [ MRP

Figure I  Accuracy of post-survey adjusted nonprobability panel samples for
Scenario 1 - average absolute error (AAE) for all sample estimates
(see Table 6), un- and weighted (raking, GREG, MRP)*

* AAE for secondary demographics and all RMSE calculations (combined, secondary
demographics, and substantive items) are presented in the tables in the Appendix.

Scenario 2: Availability of Census Aggregated Statistics, Both
Primary and Secondary Demographics were Collected from the
Nonprobability Sample

To illustrate how including new covariates in calibration further improves the
accuracy of nonprobability samples, additional socio-demographic items with cor-
responding census benchmarks were added® and ‘expanded’ calibration 1 (e.g.,
expanded raking 1) was performed (see Figure 2). The presented evidence suggests
that expanded raking and GREG predominantly improved secondary demographic
estimates and, in some cases, estimates from substantive items (see Table 7 from
the Appendix for more detailed results). For the most and the least accurate online
panel, as well as all panels combined, we can see a slight improvement in the com-
bined AAE and RMSE. Generally speaking, we can again report almost negligible
differences between estimates adjusted with expanded raking and expanded GREG.
We also did not notice a significant increase of design effect compared to basic rak-
ing.

Moreover, this time calibration did not increase AAE for substantive items
for the least accurate panel and five panels combined. Including three secondary
demographic covariates seemed to eliminate the negative effect of raking with
primary demographics only. Moreover, we can notice a notable improvement in
accuracy of substantive items after using an expanded raking scheme for the most

20 For more information on selection of additional covariates under Scenarios 2, 3 and 4
(e.g., employment status, language other than English, and voluntary work under Sce-
nario 2), see Post-survey adjustment approaches and parameters section (Methods)
and Table 10 (Appendix).
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AAE combined* (percentage points) AAE substantive items* (percentage points)
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Least accurate Most accurate 5 nonprobability Least accurate Most accurate 5 nonprobability
panel (Panel 1)  panel (Panel 3) panels combined panel (Panel 1) panel (Panel 3)  panels combined

W Unweighted M Basic raking M Expanded raking 0 Expanded GREG W Unweighted B Basic raking M Expanded raking O Expanded GREG

Figure 2 Accuracy of post-survey adjusted nonprobability panel samples for
Scenario 2 - average absolute error (AAE) for all sample estimates
(see Table 7), unweighted and weighted (raking, GREG)

*AAE were calculated for all items excluding the secondary demographics included in an
expanded calibration scheme (employment status, language other than English (LOTE),
and voluntary work, see Table 7 in the Appendix for more information)

accurate nonprobability panel (AAE: unweighted 7.1, raking 5.7, GREG 5.9). The
selected secondary demographic items seem to be more associated with representa-
tion bias in the most accurate nonprobability online panel than our core/primary
demographics.

The evidence from Figures 1 and 2 suggests that the highest-quality nonprob-
ability online panels are not only the most accurate for unweighted estimates, but
they also respond better to various calibration adjustments.

Scenario 3: Availability of Census Aggregated Statistics and One
Other Representative Source of Benchmarks

To illustrate potential added value of having access to an additional external high-
quality data source with non-demographic matching covariates, we are present-
ing results for ‘expanded’ calibration 2, CEM, MDM, and PSW in Figure 3. The
presented evidence shows how including new non-demographic covariates in post-
survey adjustment improves the accuracy of nonprobability samples fairly similarly
to including new secondary demographic covariates. However, the improvement
seems to be more substantial under Scenario 3 — an increase in accuracy measured
with AAE combined ranges from 0.4 (Panel 1, MDM) to 1.8 (Panel 1, CEM).
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Figure 3 Accuracy of post-survey adjusted nonprobability panel samples for
Scenario 3 - average absolute error (AAE) for all sample estimates
(see Table 8), unweighted and adjusted post-survey (raking, GREG,
CEM, MDM, PSW)

*AAE were calculated for all items excluding the covariates in an expanded post-survey
adjustment scheme (household status, frequency of smoking, and drinking alcohol, see
Table 8 in the Appendix for more information)

In comparison to the efficiency of calibration under Scenario 2, including non-
demographic covariates improved the accuracy of substantive items”' to a greater
extent. The decrease in that AAE (substantive items) was as high as 5.8 (Panel
3, CEM). Generally speaking, post-survey adjustment with a limited number of
covariates was more efficient with calibration (raking, GREG) and CEM than dis-
tance-based models, i.e., PSW and especially MDM. While CEM seems to com-

21 The remaining three substantive items for benchmarking were from National Health
Survey 2014-15 and General Social Survey 2014 (see Table 2).



196 methods, data, analyses | Vol. 17(2), 2023, pp. 170-206

pare favourably to other methods using covariates from a large-scale survey, we
noticed a larger design effect than for expanded raking 2.

All in all, post-survey adjustment with expanded raking, GREG and CEM
under Scenario 3 made nonprobability online panels almost as accurate as a prob-
ability-based online panel overall (AAE combined). For the three remaining sub-
stantive items, the most accurate nonprobability online panel (Panel 3) was even
more accurate after advanced adjustments than the probability online panel after
basic raking.

Scenario 4: Availability of Census Aggregated Statistics and a
Smaller-Scale Probability-Based Survey Data with Matching
Variables from Nonprobability-Based Survey Data

To illustrate potential added value of having access to a smaller-scale external
survey data source (i.e., OPBS 2017 replication sample from a probability online
panel) with non-demographic matching covariates, we are presenting results for
CEM, MDM, and PSW* in Figure 4.

The results present mixed evidence on the efficiency of post-survey adjustment
methods using smaller-scale external survey data with no demographics or health-
associated items. First, there was a fairly moderate and inconsistent effect of post-
survey adjustments on the total accuracy of nonprobability samples. In most cases,
the decrease of AAE combined was less than 0.5, and no method seemed to have a
clear advantage. The only exception to the rule was MDM with the data from five
nonprobability-based panels combined (AAE: unweighted 6.2, MDM 5.2, probabil-
ity panel 4.6). Overall, basic raking with primary demographics from Australian
Census seems to be a more reliable method than any other method for improving
the combined accuracy of secondary demographic and non-demographic estimates
with webographics.

Comparing AAE for substantive items, we can observe as many instances of
post-survey adjustment deteriorating estimates as instances of improving estimates.
The least accurate nonprobability-based panel stands out as the sample with no
decrease in AAE before or after adjustment, and CEM as the method with limited
efficiency for only one sample (the most accurate). The best result overall can again
be attributed to MDM (AAE: unweighted 7.6, MDM 6.5, probability panel 5.4),
and we can also see a positive effect of PSW on the accuracy of Panel 3 (AAE:
unweighted 7.1, PSW 6.0, probability panel 5.4).

22 A variety of other methods and their combinations would be possible under this sce-
nario with auxiliary microdata, including calibration such as raking, GREG and MRP.
However, calibration is normally carried out with benchmarks from the highest-quality
censuses or large-scale surveys, and smaller-scale probability-based survey tend to in-
troduce more error (see Table 5, probability samples).
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Figure 4  Accuracy of post-survey adjusted nonprobability panel samples for

Scenario 4 - average absolute error (AAE) for all sample estimates
(see Table 9), unweighted and adjusted (raking and matching meth-
ods)

Summary of Post-Survey Adjustment Efficiency

To sum up, we are presenting a review of all post-survey adjustment results by
four data availability scenarios. All AAE combined values from Scenarios 1-4 and
associated AAE reduction % (as a proportion of unadjusted/unweighted AAE) are
now combined.

Based on the results from Table 4 (as well as Figures 1-4), we are offering the

following main findings of our study:

the best post-survey adjustment results can be expected under Scenario 3, i.e.,
by using a combination of primary, secondary, and non-demographic covariates
from nationally representative data sources;

expanded calibration with additional secondary demographic covariates fur-
ther improves accuracy, in comparison to basic calibration with primary demo-
graphic covariates (and to a similar extent);

secondary demographic covariates seem to have a better potential to improve the
accuracy of secondary demographic estimates, and non-demographic covariates
seem to have a better potential to improve the accuracy of non-demographic
estimates (in this particular study, those were health-related items);
webographics from probability-based online panel survey data did not consis-
tently improve the accuracy of nonprobability samples (see Scenario 4 results);
there are some observable differences between the analyzed methods, albeit they
are little in this study, and MDM was the method with the least consistent results;
while we could not reduce error by more than 23% no matter the chosen aux-
iliary data, covariates or methods, we have to note that the probability samples
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from OPBS 2015 and the OPBS 2017 Replication sample were about 20-30%
more accurate than the studied nonprobability samples™.

Discussion and Conclusion

This investigation into improving inference in nonprobability sample surveys sup-
ports the conclusion that the issue of improving inference in nonprobability sample
surveys is a three-dimensional problem. First, the quality of post-survey adjust-
ments is dependent on the availability of relevant high-quality covariates which
are associated with either representation bias in nonprobability samples or outcome
variables. Second, as the covariates in nonprobability samples should have match-
ing covariates in external representative data sources, the availability and ability
to access auxiliary data is a key aspect in mitigating bias. Third, the efficiency of
post-survey adjustments is also dependent on the selection and combination of post-
survey adjustment methods, albeit to a lesser extent.

In this study, we presented evidence that post-survey adjustment can reduce
representation bias in nonprobability online samples to some extent, but cannot
consistently eliminate it. These findings are in line with evidence from Tourangeau
et al. (2014) and Kalton and Flores-Cervantes (2003). However, we demonstrated a
greater potential to mitigate representation bias in nonprobability panels if having
access to more external data sources and more covariates matching in nonprobabil-
ity samples and auxiliary data. Ideally, we would have access to large-scale survey
microdata, since smaller-scale surveys come with some nonignorable error. While
those probability surveys mostly remain more accurate than nonprobability surveys
even after post-survey adjustments, they are more susceptible to coverage, sam-
pling, and nonresponse error (or even measurement mode effect) than most high-
quality government surveys, and the total representation error can be carried over
to post-survey adjustment results (e.g., after matching or PSW). For that reason,
improving inference in nonprobability samples should be planned in the survey
design stage, and relevant external data sources reviewed before data collection, if
possible.

Moreover, identification of covariates from external data sources which are
associated with representation bias or target outcome variables can lead to a more
efficient mitigation of bias. While post-survey adjustments using primary demo-
graphics have little positive effect on the quality of nonprobability estimates, we
have shown how including secondary demographics can improve the quality of
other demographics and including non-demographics can decrease the error from

23 This research did not take into account that the accuracy of probability samples could
be further improved with the same post-survey adjustment methods including second-
ary demographic and non-demographic items.
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associated non-demographics. This is consistent with findings from Bethlehem
(2002). Similarly, Mercer et al. (2018) reported that including political attitude
covariates in adjustment improved the quality of political engagement estimates.
However, we found inconsistent evidence on the suitability of ‘webographics’ and
other internet-associated covariates for mitigating bias in nonprobability samples.
Unfortunately, we could not distinguish between the effect of those covariates and
the effect of the data source on the post-survey adjustment efficiency. While aux-
iliary variables like early adopter items (traditionally used to mitigate bias in non-
probability samples, e.g., DiSogra et al. 2011) did not distinguish our probability
online sample and nonprobability online panel samples well, we identified new
covariates for post-survey adjustment that could be considered as ‘webographics’,
such as the number of surveys participated in. Therefore, we believe it is crucial
to carry out more investigation into ‘good’ webographic variables for post-survey
adjustment, as previously suggested by Dutwin and Buskirk (2017). Our study also
highlights the importance of selection bias and representativeness, and how this
varies between different nonprobability samples (Lehdonvirta et al. 2021).

The investigation into the suitability of post-survey adjustment methods did
not highlight a particular method or a combination of them which consistently per-
formed better parameter estimates. This supports the finding from Mercer et al.
(2018). While a detailed technical investigation into calibration methods was not the
focus of this study, we found little differences in efficiency between the investigated
methods: raking and the model-based methods (such as GREG or MRP), which
was consistent with findings from Kalton and Flores-Cervantes (2003). Therefore,
we suggest the selection of calibration methods to be instead based on the availabil-
ity of joint distributions of covariates weighed against the computational intensity
of methods. While matching methods and PSW under limited scenarios might have
a better potential for efficient post-survey adjustment, we observed less consistency
in bias reduction between different samples and scenarios. We also observed an
increase of design effect for CEM and, consequently, confidence intervals for esti-
mates (see Kolenikov 2014).

This study has several limitations, including the availability of external data
and covariates both in nonprobability surveys and high-quality government sur-
veys. Having access to additional data sources could improve post-survey adjust-
ments and help distinguish better between the efficiency of covariates, the effect
of quality of external data sources, and the efficiency of methods. Moreover, since
estimates for only 18 items were compared to benchmarks and the majority of sub-
stantive items were more or less associated with one topic (i.e., health status), the
findings would be more robust if survey items with corresponding benchmarks
would be associated with other aspects of respondent’s lives, not only health.
In addition, the total survey error framework (Biemer 2010; Groves et al. 2009;
Groves & Lyberg 2010) has been proposed to provide a comprehensive overview
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of all possible sources of sampling and non-sampling errors and give a systematic
measure of survey quality that encompasses not just accuracy but also bias. The
framework attempts to account for, and assess, many sources of error that arise
through the survey process (which we could not study separately, e.g., measurement
mode effects versus representation bias). This framework lends itself to the Bayes-
ian paradigm through incorporating prior information (Shirani-Mehr et al. 2018)
or using expert opinion (Toepoel & Emerson 2017) in assessing the survey quality
of surveys not based on probability schemes. We would suggest future research
on improving inference in nonprobability samples to be more targeted, planned
and properly designed in advance. Nonetheless, the approaches discussed in this
chapter have distinct long-term benefits in improving the inferences from surveys
conducted using nonprobability samples.
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