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Abstract
Social scientists often work with theories of reciprocal causality. Sometimes theories sug-
gest that reciprocal causes work simultaneously, or work on a time-scale small enough to 
make them appear simultaneous. Researchers may employ simultaneous feedback mod-
els to investigate such theories, although the practice is rare in cross-sectional survey re-
search. This paper discusses the certain conditions that make these models possible if not 
desirable using such data. This methodological excursus covers the construction of simul-
taneous feedback models using a structural equation modeling perspective. This allows 
the researcher to test if a simultaneous feedback theory fits survey data, test competing 
hypotheses and engage in macro-comparisons. This paper presents methods in a manner 
and language amenable to the practicing social scientist who is not a statistician or matrix 
mathematician. It demonstrates how to run models using three popular software programs 
(MPlus, Stata and R), and an empirical example using International Social Survey Pro-
gram data.
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Social scientists often study reciprocally causal phenomena. For example, sup-
ply and demand in economics; candidate evaluations and party identification in 
political science; road investment and travel demand in geography; and educational 
attainment and parenthood entry in sociology and demography (Marini, 1984; 
Page & Jones, 1979; Xie & Levinson, 2010). When timings of reciprocal causes are 
unobservable or occur contemporaneously, a state of simultaneous feedback exists. 
Rather than in cycles, events happen at the same time. Philosophers of causality 
question the existence of simultaneous feedback (Mulaik, 2009: Chapter 3); how-
ever, researchers regularly face theoretical and data conditions that force them to 
accept simultaneous feedback in practice. This is particularly acute in macro-com-
parative survey research where observations take place over a year, but theoretical 
causes may take place at less-than-yearly intervals. All sub-yearly causal effects 
appear simultaneous within a year interval. Under certain conditions, macro-com-
parative researchers can employ simultaneous feedback models (SFMs) to capture 
these effects, allowing them to overcome some limitations of comparative cross-
sectional survey research. 

Herein, I elaborate when and how to use SFMs. This requires structural equa-
tion modeling (SEM) strategies to explicate theoretical relationships before extract-
ing meaningful statistical results. I use minimal statistical and mathematical jar-
gon without matrix algebra1, and a practical example of public opinion and social 
policy. I show that SFMs provide a powerful method for macro-comparative survey 
researchers to explain, predict and compare reciprocally causal phenomena.

Simultaneous Feedback
Instances where two phenomena are co-causes of each other are ubiquitous in social 
research2; however, modeling reciprocal causality is challenging. Time is usually 

1	 Matrix algebra is the basis of nearly all social science statistics including SFMs; how-
ever, this excursus is for the practicing social scientist who is unlikely a matrix alge-
braician.

2	 More non-exhaustive examples: (Brehm & Rahn, 1997; Chong & Gradstein, 2007; 
Claibourn & Martin, 2000; Liska & Reed, 1985; Mulatu & Schooler, 2002; Owens, 
1994; Thornton, Axinn, & Hill, 1992)
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the basis for explaining or predicting things (Elwert, 2013; Pedhazur, 1997). To be 
a cause or a useful predictor, X must take place prior to Y. If X happened after Y it 
is not a cause3. Sometimes researchers cannot effectively observe or operational-
ize time. For example, the moods of roommates are theoretically timed causes of 
each other but may unfold so quickly that they appear simultaneously causal (Sie-
gel & Alloy, 1990). It is possible that there are nanoseconds in between, but these 
are unobservable. Furthermore, excessive complexity of timings and multitudinous 
mood causes running in both directions leave the researcher viewing mood effects 
as simultaneous.

Macro-comparative research is similar on a larger time scale. Contextual data 
tend to measure time points spanning an entire year. Reciprocally causal effects 
that take place in just days, weeks or even months subsume into these yearly obser-
vations. For example, public opinion likely causes changes in policymaking on a 
weekly or monthly basis as policymakers constantly try to meet public preferences. 
Simultaneously, public opinion changes within minutes or hours in response to 
policy changes. When capturing these opinion-policy effects with survey data, the 
two appear to have simultaneous causality within each year unit. Moreover, survey 
researchers lack yearly comparative opinion data across countries, e.g., cross-sec-
tional yearly time-series4, rendering longitudinal methods sometimes inappropri-
ate. Having sporadic macro-comparative survey data means SFMs might be appro-
priate, but this is not a sufficient condition to use them. Theory must drive this 
decision (Hayduk et al., 2007; Kaplan, Harik, & Hotchkiss, 2001).

Given a theory of simultaneous feedback between two phenomena, I label 
them Y1 and Y2

5, where at least two different linkages exist between them if not 
more. One for the effect of Y1 on Y2 and one vice-versa. However, when I observe 
and quantify Y1 and Y2 as variables, they have only one empirical linkage: their 
covariance (or correlation). Identifying two effects statistically, when there is only 
one covariance, is not possible. Y1 and Y2 are nonrecursive meaning that their 
respective effects on each other cannot be identified using only their joint informa-
tion. Their reciprocal relationship makes them endogenous meaning caused from 

3	 The method herein applies to causal or explanatory research subsuming causes or sev-
eral causes into a package of predictive power without considering the mechanisms in 
detail. Although causality is at the heart of the theoretical side of SFMs, the vast realm 
of mathematics and philosophy of causality is beyond the scope of this paper (Pearl, 
2010; Sobel, 1996).

4	 Although impressive, many macro-comparative sources of survey data barely qualify 
as longitudinal, cross-sectional time-series when fielded only every 2 to 10 years (e.g., 
European Social Survey, World Values Survey and International Social Survey Pro-
gram).

5	 I use Y1 and Y2 rather than X and Y, because Y denotes dependent variables. Recipro-
cally causal variables are dependent on each other.
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within; however, identifying these nonrecursive endogenous effects requires some 
exogenous causes from without. 

I describe this problem using Equations 1 and 2, and Figure 1. Both cases 
present a system logically underidentified – there are more parameters to be esti-
mated than pieces of observed information (two coefficients b1 and b2 yet only one 
covariance of Y1 and Y2).

1 1 2 1Y b Y e= + 	 (1)

2 2 1 2Y b Y e= + 	 (2)

Regression analysis could estimate Equations 1 and 2, but results are probably 
inaccurate given a theory of reciprocal causality. In Figure 1 the arrows represent 
theoretical effects, and b1 and b2 represent regression coefficients. Y1 is not known 
without knowing Y2 and Y2 is not known without knowing Y1: An endless circle!

Identifying b1 and b2 is an exercise in finding more variables or parameters. 
Figure 2 gives four common formal models containing reciprocal causality, some 
identified, others not. Adding instrumental variables (IVs) enables identification of 
unique b1 and b2 effects. An IV is exogenous: not caused by the system described 
in the model, not caused by Y1 or Y2 and not moderating or somehow causing the 
causal paths linking Y1 and Y2. Figure 2A describes some phenomenon labeled Y1 
occurring at time “t” that is both a cause (arrow pointing away) and outcome (arrow 
pointing towards) of another phenomenon Y2 measured at the same time. In this, 
IV1 must be a cause of Y1 but not of Y2; and IV2 must cause Y2 but not Y1 (see section 
“Instrumental variables”). 

Figure 2A is the basic SFM form. 
Other common reciprocal effects models appear in Figure 2B-2D. Cross-

lagged reciprocal effects (2B) are a common form of reciprocal causal modeling 
(for discussions: Billings & Wroten, 1978; Schaubroeck, 1990). Looking at Y1 and 
Y2 longitudinally over time generates separate, unique covariances between Y1 
and Y2; one for Y2,t-1 with Y1,t and another for Y1,t-1 with Y2,t. Cross-lagged models 
require the assumption that Y1 and Y2 do not cause each other simultaneously for 
identification (omitted arrows between them at time t). Macro-comparative survey 
researchers rarely have sequential time series of survey data in several countries 
making these models untenable, often because of missing time points or the exact 
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Figure 1. Path Model of Equations 1 and 2 
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timing of cause and effect do not match the starting and ending points of the survey 
(Finkel, 1995). If causes occur at a less-than-yearly interval, in addition to across 
time-units, then Figure 2C is accurate visually but underidentified statistically. A 
similar story occurs when adding instrumental variables to 2C as shown in 2D. The 
instruments do not add enough power to overcome the cyclically recursive problem 
of observing Y1 and Y2 over time because they are causes of their later selves in 
addition to causing each other leading again to too many parameters.
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Figure 2. Various Models of Reciprocal Causality 
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Conditions Necessary for Simultaneous Feedback 
Models
A strong theory, equilibrium, model identification and appropriate instrumental 
variables are the necessary features to employ Figure 2A. 

Theory

The first and most important requirements of SFMs are theoretical. Without the-
ory, the two arrows connecting Y1 and Y2 do not exist. There must be an a priori 
logic to the data-generating model, defensible against confounding effects (Heck-
man, 2000; Rigdon, 1995). Thus, a theory of simultaneous causality is the baseline 
condition. This theory must specify that during the observational window causal 
effects materialized between Y1 and Y2; regardless of whether these are direct or 
operating through intermediary mechanisms. A researcher must provide sufficient 
argument for simultaneity. That of, (1) co-determinacy with effects that happen 
‘instantaneously’ in less time than can be observed, or (2) complexity with effects 
that are constantly taking place going in many directions having various lengths 
of time to complete; so as to appear simultaneous. Without this theoretical basis 
to the Y1 and Y2 relationship, researchers have no ground to stand on in defense of 
simultaneous feedback (Hayduk et al., 2007; Markus, 2010). Theory determines 
the design of a formal path model, instrumental variables, equilibrium, size and 
direction of effects, the set of independent variables, and the nature of errors and 
estimation techniques. Suffice to say, theory is paramount. 

Equilibrium

Two forms of equilibrium need be present in SFMs. The first is that causal effects 
are theoretically stable or behave in a stable manner. There should be logical argu-
ment that the impact of Y1 on Y2 and vice-versa, do not change over time (Kaplan 
et al., 2001). In other words, the effects should not depend on when in time the 
researcher observes Y1 and Y2 (Sobel, 1990). This is a grey area as inevitably all 
social things change over time; so a better stance to defend might be they do not 
change much in a given period. For example, if the area of farmed land reduces 
the hunger in a society while the rate of hunger increases the area of farmed land, 
a researcher might argue for equilibrium, as a change in one produces a predict-
able change in the other. Statistically speaking the regression coefficients should be 
stable. However, technology increases food produced per acre, disrupting the equi-
librium because each acre has a larger impact on hunger reduction. This implies 
that the regression coefficients change if technology changes, but might be stable 
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before and after. If the model includes events before and after this change, it is mis-
specified as a SFM. 

The second part is that the causal effects are part of a context at equilibrium, 
e.g., a political or judicial system. If a system experiences shocks then equilibrium 
is unlikely, e.g., disruptive wars or economic recessions. Therefore, the researcher 
must rule out changes to the larger systems within which Y1 and Y2 operate (see sec-
tion “Disequilibrium”).

Identification

Any formal model, including one with simultaneous feedback must be identified to 
produce meaningful results or results at all6. To identify two statistical coefficients 
that capture two theoretical effects between Y1 and Y2 there must be more than one 
covariance in the model. Only one covariance in the feedback model is underi-
dentified, meaning more parameters to estimate than pieces of observed informa-
tion leading to a negative value for model degrees of freedom. Pieces of observed 
information are all parameters the researcher observes in the data including the 
means, variances and covariances of the variables in the model, also known as 
model “elements” (Rigdon, 1994). In SFMs, the observed means are often not esti-
mated because researchers’ main interests are in the coefficients between Y1 and Y2 
that derive entirely from covariances, irrespective of means. Adding means to the 
analysis generally complicates things with few cases. 

Without means, the formula to calculate pieces of observed model informa-
tion is ( )1 / 2v v + , where v is the number of observed variables (Kline, 2011). The 
model needs a minimum of the same number of model elements as freely estimated 
parameters for identification, i.e., model degrees of freedom needs to be larger than 
or equal to zero. To illustrate, I add one predictor variable X, as shown in Figure 
3. Figure 3A is not identified because it requires estimation of four coefficients (a 
through d) and three variances (g through i), with residual covariance m optional. 
Fixing m to zero for now, and knowing nothing about a through i, there are seven 
freely estimated parameters (a through i). That means I need seven pieces of infor-
mation for a just-identified model. There are only six pieces in Figure 3A: three 
covariances ( 2 1 21 | , | ,, X Y YX YY ) and three variances (for 21 &,X Y Y ), or 3(4)/2=6. 
Thus, model degrees of freedom is smaller than zero (six minus seven). Figure 3A 
is underidentified.

Figure 3B includes IV1 and IV2, creating 5(6)/2 = 15 pieces of information. 
Assuming that the IVs and the error terms are correlated (parameters n and m 
respectively), the model has 15 freely estimated parameters (all letters in 3B), 

6	 Any introductory text on structural equation modeling covers identification. I find 
Kline (2011) a useful source.
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meaning model degrees of freedom is zero and the model is just-identified. An 
ideal model has more than zero, for example three IVs leads to 6(7)/2=21 pieces of 
observed information and 20 freely estimated parameters; degrees of model free-
dom equals one. However, IVs are difficult to find. An identification rule requires 
at least one IV for each Y variable. If both instruments are attached to Y2, and none 
to Y1, the model might have degrees of freedom greater than zero, but the model is 
still not identified without an IV for Y1. This is known as the rank condition. This 
condition is satisfied when, “each variable in a feedback loop has a unique pattern 
of direct effects on it from variables outside the loop” (Kline, 2011, p. 135). Adding 
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Figure 3. Identifying Simultaneous Feedback Models 
A. Without instruments (not identified)  

 
 

B. With instruments (identified) 

 
 

Figure 3B includes 𝐼𝐼𝐼𝐼1 and 𝐼𝐼𝐼𝐼2, creating 5(6)/2 = 15 pieces of information. Assuming that the 

𝐼𝐼𝐼𝐼s and the error terms are correlated (parameters n and m respectively), the model has 15 freely 

estimated parameters (all letters in 3B), meaning model degrees of freedom is zero and the model is 

just-identified. An ideal model has more, for example three 𝐼𝐼𝐼𝐼s leads to 6(7)/2=21 pieces of 

observed information and 20 freely estimated parameters; degrees of model freedom equals one. 

However, 𝐼𝐼𝐼𝐼s are difficult to find, as I discuss next. An identification rule requires at least one 𝐼𝐼𝐼𝐼 for 

each 𝑌𝑌 variable. If both instruments are attached to 𝑌𝑌2, and none to 𝑌𝑌1, the model would lead to 

degrees of freedom greater than zero, but the model is still not identified without an IV for 𝑌𝑌1. This is 

known as the rank condition. This condition is satisfied when, “each variable in a feedback loop has 

a unique pattern of direct effects on it from variables outside the loop” (Kline, 2011, p. 135). Adding 

more 𝑋𝑋 variables to 3B does not help with identification as it does not change the degrees of model 

freedom nor add unique direct effects.  

1

1

Y2

Y1

e2

e1

X a b

c

d

g

h

i m

e

f
1

1

Y2

Y1

e2

e1

X a b

c

d

g

h

i m

IV1

IV2

k

j

n

o

p

Figure 3	 Identifying Simultaneous Feedback Models



273 Breznau: Simultaneous Feedback Models

more X variables to 3B does not help with identification as it does not change the 
degrees of model freedom nor add unique direct effects. 

Instrumental Variables

Identification depends on instrumental variables (IV1 and IV2). Necessary condi-
tions for selecting IVs are theoretical and statistical. “Instrumental variables” is 
both an estimation technique and a label for specific exogenous variables (Sargan, 
1958). This section is devoted to exogenous variables, saying nothing of estimation 
techniques7. An IV must be exogenous to the dependent variable. In experimental 
language, IV causes the distribution of a treatment but not the outcome. In non-
experimental language, the endogenous variable depends on the values of the IV 
independently from the dependent variable, or the dependent variable only shows 
covariance with the IV after conditioning on the endogenous variable.

In Figure 3B, the IV for Y1 must not cause Y2. If IV1 is a cause of Y2 then IV1 
is an independent variable, not an IV. All independent variables explain or predict 
all endogenous variables, thus are part of the data-generating model of Y2 (and Y1). 
For IV1 to pass it must not be part of the data-generating model of Y2. This is the 
exclusion restriction. The problem is not correlation of IV1 with Y2, but correlation 
of IV1 with e2; i.e., correlation with the unexplained disturbance or error in the 
dependent variable after adjusting for the impact of all independent variables. If IV1 
causes Y2, or omitted variables cause both IV1 and Y2 then a correlation of IV1 with 
e2 exists; and the larger this correlation, the larger the problems with the IV. If IV1 
has a small correlation with e2 because of measurement or random error, then as 
the sample size approaches infinity the correlation approaches its true value of zero 
(i.e., asymptotic correlation = 0). If so, small IV1 with Y2 correlations after adjusting 
for covariates are acceptable. 

When meeting these conditions, IV1 and IV2 decompose the single correla-
tion between Y1 and Y2 in Figure 3B into 3 parts: (1) the part that could result from 
a causal effect or a shared omitted causal effect of Y1 on Y2 (covariance left after 
removing that predicted by IV2), (2) the same for Y2 on Y1, and (3) the unexplained 
remaining covariance of error terms e1 and e2. Although technically optional, Part 
(3) is usually modeled, because finding instruments that explain everything about 
Y1 and Y2 with no remainder is unlikely. Moreover, the error term e1 is produced 
by a causal effect of Y2 (path b). Yet e2 is a part of Y2 and is therefore by definition 
a part of the error term e1, i.e., correlated with its own partial correlation produced 
from Y2 being regressed on Y1 (Wong & Law, 1999, p. 73). The same is true for 
e2, and therefore specifying no residual correlation may deny the causally defined 

7	 Other literature covers this in-depth (Angrist, Imbens, & Rubin, 1996; Angrist & 
Krueger, 2001; Bascle, 2008; Bollen, 2012).
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model its own properties. Thus, sometimes a cross-sectional nonrecursive model 
with correlated errors is the ʻbest availableʼ approximation of cross-lagged recipro-
cal effects when they are otherwise underidentified.

Even if theoretically not causal, a large correlation between IV1 and Y2 is a 
problem statistically. The larger the correlation the more variance that all indepen-
dent variables must explain in Y2 before IV1 is left uncorrelated with e2. In other 
words, the partial correlation of IV1 and Y2 takes away variance in IV1 that is neces-
sary to explain Y1. Thus, the larger this correlation, the greater the disruption of the 
researcher’s goal to explain variance in Y1 independent of Y2 and all independent 
variables. An inverse of this problem occurs when IV1 has an increasingly closer-to-
zero correlation with Y1 (Bartels, 1991). The smaller the correlation, the less unique 
variance of Y1 that can be explained by IV1. These two conditions describe a weak 
instrument problem. Theoretical arguments establish exclusion restrictions neces-
sary to use instrumental variables; however, statistics help identify potential weak 
instrument problems.

In SEM, model diagnostics, in particular modification indices provide a simple 
first line of defense to identify weak instruments (see “Fit testing and diagnostics”). 
This applies because the structural model (what the researcher draws in a path dia-
gram and then programs into the statistical software) fixes the correlation of each 
IV with each corresponding e to be zero. The fit and modification indices tell the 
researcher if these fixed zero correlations are realistic given the data. Alternatively, 
traditional weak instrument tests come from estimating whether results from the 
instrumental variable estimator and the OLS estimator are consistent, defined in 
a number of ways depending on the test (Bollen, 2012; Hahn & Hausman, 2002).

There are a variety of statisticians arguing for statistical methods to identify 
instrumental variables without theoretical arguments that an IV meets the exclu-
sion restriction (see “Other concerns”). Although these methods may asymptoti-
cally recover a known causal effect (as shown in simulations), the SFM researcher 
is searching for causal effects whose existence or size is empirically unknown. If 
already known, research becomes unnecessary. Moreover, even when the corre-
lation of IV1 and Y2 is exactly zero, there is no statistical way to know for sure 
that IV1 and e2 do not correlate due to causal or omitted variable linkages. Sup-
pression or omitted variables can easily produce a statistical relationship of zero, 
when the actual causal relationship is non-zero (MacKinnon, Krull, & Lockwood, 
2000)8. Thus, theoretical arguments are necessary to rule out ‘backdoor’ or con-
founding relationships among variables. Finally, arguments must establish that the 

8	 The drawing of a causal structure with a path diagram or graph notation introduced by 
Wright (1920) allows researchers to follow rules determining d-separation, exogeneity, 
collision, and confounding. However, the drawing of the model depends entirely on 
qualitative use of reason and logic (not statistics or data) (Chen & Pearl, 2015; Elwert, 
2013).
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instrument is applicable to all cases in the data. If there are cases where the instru-
ment might have a unique causal relationship with the independent variable, so 
that effects are not monotonic, then this is another form of confounding calling for 
model re-specification.

Although focused on experimental research, a meta-analysis of instrumen-
tal variable estimates in political science suggests that researchers routinely fail 
to offer theoretical arguments that the IV is: (1) unrelated to unobserved/omitted 
causes of Y, (2) has no direct (causal) effect on Y, and (3) that the instrument could 
plausibly affect all cases (Sovey & Green, 2011)9. This neglect has grave implica-
tions for the trustworthiness of results.

An Application – Opinion and Policy

I use the example of Breznau (2017) modeling simultaneous feedback between pub-
lic opinion and social spending to provide a didactical picture of SFMs. I only 
briefly summarize the theory from the original research, to keep the focus on 
execution of the SFM. Public opinion and social policy are an example of theo-
retical simultaneous feedback, because: (1) Opinion and policy are co-determinant 
occurring at the same moments or overlapping moments in time. Observing public 
opinion in a one-year unit prevents observation of anything other than simultane-
ous effects, even if multiple effects take place within a year. (2) The relationship is 
so complex that a simultaneous model may come closer to reality than something 
with arbitrary lags (as taken from years of a survey). Policymakers imagine opinion 
or act on expected future changes in opinion before opinion changes occur, while 
public opinion responds to policymakers’ intentions and discussions before they 
actually change policy. Moreover, opinion responds to many things at once over 
many points in time and the responses take different lengths to materialize. The 
same applies to policymaking. Given all these effects starting, maturing, declining 
and then stopping over time, I expect that there is a simultaneous effect, or average 
simultaneous effect underlying all effects. 

The instruments I employ are female labor force participation (IV1) for public 
opinion (Y1) and veto points (IV2) for policy (Y2). Labor force participation influ-
ences policy attitudes. Holding male participation roughly equal (as seen across 
OECD countries), variation in the distribution of female participation links to 
changes in aggregate opinion. Women, who are significantly more supportive of 
social policy than men are, become less supportive when in the labor force, on 
average. Moreover, the policy ‘styles’ of different countries show no patterning by 
female labor force participation suggesting that at least in recent decades it has no 
effect on social policy in the aggregate (i.e., exogenous from Y2). Veto points deter-

9	 An argument I am guilty of not making in Breznau (2017)!
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mines how easy it is to block legislation in the design of the political system (e.g., 
executive or minority veto, bicameralism or federalism), thus where veto points are 
higher, policy provisions should be lower. Veto points are part of a larger institu-
tional framework of societies that might influence public opinion; however, previ-
ous research suggests that they are independent (i.e., exogenous from Y1). Moreover, 
veto points predate the measurement of public opinion by decades if not centuries, 
further meeting the exclusion restriction (see Breznau, 2017).

The data I use are publically available; public opinion in the International 
Social Survey Program ‘Role of Government’ and ‘Religion’ modules and social 
policy spending from the Organization for Economic Co-operation and Develop-
ment ‘Social Expenditures Database’ covering 70 country-time points (across 1985-
2006). I provide the variances and covariances necessary to estimate the main 
models. I include means only for didactic purposes (see Appendix 1-Table A1). 
All variable measurements and countries are in Appendix 1-Table A2, reproduc-
ing Breznau (2017, p. 597). Almost all SEM software reads raw data or covariance 
matrix data (including correlation/variance matrices). Appendix 1-Table A3 pro-
vides programming code (some call this “syntax”) for Mplus, Stata and R (RStudio 
running lavaan). Stata and R allow programming the matrix by hand, and Mplus 
reads a .dat file, which is a product of copying the matrix into a text editor and sav-
ing it with the file extension .dat10. 

I analyze models of opinion and policy reflecting Figure 3B with four inde-
pendent X variables (aged population, right-party power, unemployment and GDP) 
predicting both Y outcomes. Table 1 presents results for M1, a model of free estima-
tion with little theory and no additional model constraints. Column “b” are unstan-
dardized (‘metric’) coefficients, and “β” standardized coefficients. The results from 
Mplus here are identical to the other software except rounding error. 

The results reveal how much Y1 and Y2 cause or explain each other’s vari-
ance. The standardized coefficient for Y2 predicting Y1 suggests that social policy 
has a very large impact on public opinion (0.715), larger than public opinion has 
on social policy (0.084). However, according to standard testing the effects are 
insignificant. The insignificance of the smaller effect is perhaps not surprising but 
insignificance of the very large effect demonstrates the difficulty in disentangling 
reciprocal effects statistically. Moreover, the countries are not exactly a sample of a 
larger population, like with human populations. Cut-offs (e.g., p<0.05) are perhaps 
arbitrary without a sample population to generalize into. The t-statistic is still use-
ful for gauging the coefficients. Thus, Y2 impacting Y1 is more reliable and precise 
(t=0.148/0.088=1.682) than vice-versa (at 0.357).

10	 A1-Appendix One is at the end of this document. The long-form of all code, data, 
and supplementary analyses are available in Appendix Two and Three, A2 and A3 at 
https://osf.io/gyz6p/, and .dat files at https://osf.io/cxzj6/.

https://osf.io/gyz6p/
https://osf.io/cxzj6/
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Scholars should exercise caution when interpreting effects independently. 
The relationship is a loop, not a single causal arrow. Here this loop accounts for 
(0.715*0.084=0.06) 6% of the joint distribution of the two Y variables (although 
this percentage also depends on the signs and scaling of the coefficients, see section 
“Explaining variance”). If correctly specified, social policy is a stronger compo-
nent of this loop. In fact, the term field better describes this relationship because the 
forces are simultaneous and constant like magnets. The coefficients represent con-
stant forces in this stable field. This contrasts with a cyclical loop where a change in 
one variable sends effects looping through Y1 and Y2 in a cyclical process. A steady-
state force of the loop and a cyclical force running through the loop are different. To 
say that the levels of Y1 on Y2 are at equilibrium because of their perpetual effects 

Table 1	 Results from M1. Freely Estimated Simultaneous Feedback between 
Opinion and Policy

Y1 (public opinion) ON b s.e. β Fig 3B label

Y2 (social policy) 0.148 0.088 0.715 b
X1 (aged) 0.024 0.116 0.052 c1
X2 (right) -0.659 0.656 -0.133 c2
X3 (unemp) -0.070 0.039 -0.264 c3
X4 (GDP) -0.055 0.024 -0.287 c4
IV1 (FLP) -0.073 0.018 -0.540 e

Y2 (social policy) ON
Y1 (public opinion) 0.403 1.129 0.084 a
X1 (aged) 1.134 0.318 0.507 d1
X2 (right) -4.615 2.560 -0.194 d2
X3 (unemp) 0.187 0.140 0.145 d3
X4 (GDP) 0.113 0.140 0.124 d4
IV2 (veto) -7.509 2.988 -0.235 f

variance std.variance
e.Y1 0.630 0.323 0.654 g
e.Y2 13.211 2.242 0.592 h

covariance correlation
(e.Y1,e.Y2) -1.878 1.213 -0.651 m

Note. b are metric and β are standardized coefficients; 70 country-time point cases from 
ISSP, OECD and other data sources (see A1-Table A2 or Breznau 2017, M10B); Figure 
3B contains only one X variable so labels include a subscript to differentiate the four X 
variables in this model.
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on each other is different than stating that causal effects between Y1 on Y2 unfold in 
specific, precise periods. 

I do not rule out the cyclical version of feedback, but have specific theoretical 
arguments for a non-cyclical version, one that takes place without yearly-time con-
sideration and is sufficiently complex to warrant SFMs. I might take interest in the 
cyclical relationship when investigating a specific social policy with specific time 
periods of voting or policymaking. But this macro-comparative exercise presumes 
that the sum of all specific instances contains common simultaneous feedback; i.e., 
not particular to one country-year. The comparative advantage here is the ability 
to test if the general process formulated in a theory of simultaneous feedback and 
positive returns can be explained by these data (Breznau, 2017; Pierson, 2000).

Without acknowledging reciprocal causality in some form, scholars might 
measure a unidirectional effect of Y1 on Y2 and then separately estimate unidirec-
tional Y2 on Y1 rather than a SFM. Appendix 1-Table A4 reveals results from sepa-
rate regressions. The striking difference is that in both unidirectional regressions 
the β-coefficients for Y1 and Y2 are close to 0.1. This approach leads researchers to 
conclude that either public opinion explains or causes social policy (Y1 causes Y2) 
or vice-versa (Y2 causes Y1), and in either case that the effect is around magnitude 
of 0.1 standard deviations. Given a theory of simultaneous or reciprocal causality, 
both conclusions are false and these models are misspecified11. The theory used 
in constructing M1, and the non-zero loop effect of 6% are evidence of this mis-
specification.

Hypothesis Testing – The SEM Perspective
All parameters in M1 are free, showing how causal effects might look if I know 
nothing theoretically about Y1 and Y2 feedback. Given a sufficiently detailed theory 
of simultaneous feedback, a scholar knows something about the feedback. Thus, I 
test hypotheses derived from this knowledge. This is the structural equation mod-
eler perspective focusing on overidentified models (Bollen, 1989). This perspective 
aims to test if a hypothetically derived model leads to something not far off from 
observational data. If the implied covariances of an overidentified model are not 
significantly different from observed covariances, then the hypothetical model may 
reflect the real-world data-generating processes. Testing hypotheses means compar-
ing models with different exclusions or constraints to determine which fits the data 
better. Both model testing and model comparison require overidentified models.

11	 For example, Zhu and Lipsmeyer (2015) use ISSP data to show an impact of policy on 
opinion while Brooks and Manza (2006) use ISSP data to show an impact of opinion on 
policy without acknowledging reciprocal causality in their models.
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Adding more instrumental variables achieves overidentification, as each adds 
one degree of model freedom. However, instrumental variables are rare and hav-
ing two here represents the current limits of this research, beyond speculation 
(Breznau, 2013, p. 132; 136). 

Fixing Parameters

Arguments for a reciprocal relationship of Y1 and Y2, are likely to include theory of 
what this relationship looks like. This is true for opinion and policy feedback (Pier-
son, 2000; Soroka & Wlezien, 2010). Thus, I specify hypotheses about the nature of 
the feedback and fix parameters to reflect this. The methodological advantage is an 
overidentified model. The theoretical advantages are testing competing hypotheses 
to construct improved theory. 

After reviewing the literature I determine that a thermostatic feedback theory 
suggests that the standardized coefficient a (from Figure 3B) is negative 0.05 and b 
is positive 0.30 (see Breznau, 2017). I fix the parameters to these values in M2. The 
SEM software analyzes only unstandardized effects, thus it is necessary to derive 
them by scaling the standard deviation of the standardized variable from one to 
its observed value12. Meanwhile an increasing returns theory suggests that both 
coefficients are positive, possibly around 0.15 as specified in M3. The code is in 
Appendix 1-Table A5, and Table 2 presents the results. 

The other variables’ coefficients do not carry much in the way of hypothesis 
testing (that comes in “Fit testing and diagnostics”); however, they should match 
theoretical expectations. For example, if the coefficient for aged (X1) was large and 
negative, I would become very suspicious that my model is misspecified because 
it is well-established that more older persons in a society requires far more social 
spending and usually means greater support of social spending. 

A researcher might wish to fix an error term, covariance or mean instead of an 
effect. M4 has a fixed Y2 error variance of 0.3, fixed covariance of Y1 and Y2 error 
terms at zero and means of Y1 and Y2 at zero. I do not have theoretical arguments for 
these constraints, they are didactic. Survey data provide the possibility to calculate 
measurement error for public opinion and I invent the number 0.3 here to represent 
this possibility. A fixed covariance of zero would be that the model represents a 
closed system accounting for all possible causal pathways between the variables. 
This would meet an experimental ideal, where the model explains all things that 
cause Y1, Y2 and the causal loop between them. But this is highly unlikely in the 
complex realm of cross-national survey research (see section “Instrumental vari-

12	 Standardized effect formula: β * X

Y

b σ
σ

=  ; metric effect formula: * Y

X

b σβ
σ

=  ; where 

β  = standardized coefficient, b = metric coefficient, Xσ  = standard deviation of the 
independent variable, and Yσ  = standard deviation of the dependent variable.
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ables”). Nonetheless, I constrain it here for exercise. Means at zero is not important 
theoretically, it just centers the expected values of Y1 and Y2

13.

Fit Testing and Diagnostics

Tests of fit determine how well a theoretically derived model explains real-world 
observations or compares with alternative models. There is a small universe of 
these tests. The art of ruling out alternative theoretical models is crucial to scien-
tific utility (Hayduk et al., 2007; and discussed on the structural equation model-
ing listserv SEMNET), and primarily comes from investigation of how close the 

13	 Researchers may have a theory that effects a and b are equal, but not have any predic-
tion about their size. It is possible to constrain a and b to equality and let computer 
estimation decide what size is ideal in all three softwares (see A3-Appendix Three).

Table 2	 Models of Competing Theories of Opinion-Policy Simultaneous 
Feedback

M2 M3 M4

variable b s.e β   b s.e β   b s.e β

Y1 (public opinion) ON
Y2  (social policy) -0.010 - - -0.048 0.030 - - 0.146 0.030 - - 0.165
X1 (aged) 0.216 0.038 0.466 0.167 0.037 0.362 0.209 0.027 0.484
X2 (right) -1.434 0.413 -0.291 -1.240 0.402 -0.252 -1.055 0.331 -0.229
X3 (unemp) -0.034 0.028 -0.129 -0.044 0.027 -0.165 -0.006 0.018 -0.023
X4 (GDP) -0.053 0.020 -0.281 -0.053 0.019 -0.282 -0.044 0.016 -0.249
IV1 (FLP) -0.063 0.015 -0.471 -0.066 0.014 -0.494 -0.045 0.009 -0.358

Y2 (social policy) ON
Y1 (public opinion) 1.500 - - 0.311 0.750 - - 0.154 0.750 - - 0.137
X1 (aged) 0.901 0.211 0.403 1.062 0.207 0.474 1.175 0.164 0.495
X2 (right) -3.376 2.264 -0.142 -4.217 2.225 -0.177 -3.929 2.211 -0.156
X3 (unemp) 0.172 0.142 0.134 0.183 0.140 0.142 0.245 0.121 0.180
X4 (GDP) 0.210 0.104 0.229 0.148 0.103 0.160 0.201 0.080 0.206
IV2 (veto) -8.070 3.107 -0.252 -8.369 2.986 -0.261 -7.183 2.987 -0.212

e.Y1 0.446 0.075 0.466 0.424 0.072 0.445 0.300 - - 0.360
e.Y2 13.702 2.318 0.613 13.234 2.240 0.589 13.370 2.260 0.532

(e.Y1,e.Y2) -0.279 0.307 -0.113  -0.472 0.293 -0.199  0.000 - - 0.000

Note. Stata results shown; R (lavaan) and Mplus identical except rounding error. M4 is 
not theoretical, has didactic purpose only.
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model-implied covariances come to the freely observed covariances in the data. 
The proportion of explained variance (r2) is often a secondary concern. The term 
residual denotes the differences between model-implied covariances and observed 
covariances. Residual also describes OLS error (in Ŷ ), thus structural modelers 
sometimes use fitted residuals or covariance residuals to adjudicate these concepts 
(Kline, 2011). 

For just-identified models (like M1) the covariance residuals are zero as 
implied and observed are identical. In overidentified models, larger residuals sug-
gest worse local fit. Scholars rely on standardized residuals and normalized resid-
uals given that residuals on their own do not have a common metric. Appendix 
1-Table A6 provides residuals for M2 and M3. Smaller residuals support M3. 

I might worry about the -1.28 normalized residual of IV2 and Y1 in M2 (Appen-
dix 1-Table A6). This suggests unexplained covariance remaining between these 
variables, where none should be present. This might evidence a weak instrument. 
However, M3 is the preferred model where this residual is slightly lower at -0.964. 
Given that M3 fits well overall (as shown in Table 3), and that the theory sup-
ports the instrument of veto points being exogenous to public opinion, I tentatively 
defend IV2. Yet future research should search for other IVs. What causes policy 
changes that does not cause opinion changes is a puzzle. Finding strong and valid 
instruments is a perpetual concern (Antonakis et al., 2010). 

The model chi-square ( 2χ ) provides the primary statistic for evaluating 
global model fit. The 2χ  comes from maximum-likelihood estimation (for a good 
introduction see Kline, 2011, p. 199). The exact fit hypothesis is that implied and 
observed covariance matrices are identical except for random error. Put into test 
terms, 2χ difference should not be significant at p<0.05, otherwise the matrices in 
comparison are significantly different offering evidence to reject this model. Thus, 
p>0.05 is a reasonable level to not reject the exact fit hypothesis. If this test passes, 
it does not guarantee the strength of the IV, but asserts that nothing about the model 
radically departs from the observed data; i.e., displays reasonable global fit. The 
exact fit test becomes increasingly likely to fail the larger the sample because it is 
more likely to pick up very small confounding parameters in the empirical realm. 
In macro-comparative survey research, having too large of a country sample is 
unlikely a problem. The equal fit hypothesis is that two implied covariance matri-
ces do not differ from one another. If p<0.05 they are significantly different sup-
porting the larger model (with less degrees of freedom). Note that models are only 
comparable with an equal fit test when they are nested; i.e., have all the same basic 
parameters and observational data. 

There are several other global fit diagnostics. Considering all of them is help-
ful in selecting models, especially when they are not nested (Kline, 2011)14. Table 

14	 David Kenny’s website provides discussions of model fit http://davidakenny.net/cm/fit.
htm. 

http://davidakenny.net/cm/fit.htm
http://davidakenny.net/cm/fit.htm
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3 contains fit and diagnostics for models M1-M4, offering some preferable targets 
of these indices. I conclude that M3 is better than M1 because M1 does not have 
a strong theory to test and AIC and BIC are worse; and better than M2 because 
all fit indices (AIC, BIC, RMSEA, CFI and TLI) are better. Also, exact fit is less 
significant (0.252 vs. 0.065) and equal fit more significant (p-value 0.004) than M2 
(0.013). It is better than M4, although M4 is just for example. 

In addition to residuals, another tool to identify local misfit is modification 
indices. For every parameter in the model, the modification index is the change 
in 2χ  if that parameter (coefficient or residual covariance) were freely estimated 
instead of estimated in its current form. The values are zero for parameters already 
freely estimated and take on positive values for parameters currently fixed (for 
example the effect of IV1 on Y2 in all of the models). Appendix 1-Table A7 lists all 
non-zero modification indices for M2 and M3. Appendix 1-Table A7 suggests that 
estimating a free parameter for the regression of Y2 on IV1 is a way to improve the 
model. The normalized residual between Y2 and IV1 is -1.28 (see Appendix 1-Table 
A6) supporting this claim; however, a much larger gain in model fit would result 
from adding a freely estimated coefficient for Y1 on IV2 (4.374 in M2) than for Y2 on 
IV1 (0.745 in M2). This distinction is not evident from looking only at the residuals. 
Yet, neither of these is possible because the model is not identified with the addition 
of either parameter (as per the rank condition discussed earlier). Here again are the 
current limits of this research.

Modification indices are agnostic statistical scores; they do not identify a theo-
retical problem. Thus, simply freeing parameters in the model might defy, disrupt 
or debunk the causal model that the researcher carefully constructed using theory. 
Modification indices are a tool for researchers to use to re-visit their theories and 
discover what might be missing logically, before making any changes to the model. 
Focusing on M2: In Table A7, the modification indices are identical for the effect 
of IV2 on Y1 and Y2 on Y1, and identical for IV1 on Y2 and Y1 on Y2. This demon-
strates how endogeneity works in the SFM. There is residual covariance between 
Y1 and Y2 (normalized value of 0.197 in M2) and the fit of the model may suffer as 
a result, as the modification index of 4.374 suggests. This essentially means there is 
a statistical relationship (covariance) between Y1 and Y2 not explained by the model 
and if something could account for this unique feedback error, the model would fit 
better; in this case a better or additional instrument for IV2. I did not discuss this in 
Breznau (2017), but this is a useful finding from this excursus pointing at further 
research. 

Explaining Variance

Sometimes a purpose of explaining variance arises in addition to fit testing. In a 
SFM, this is a difficult conceptual task. The loop is the product of both coefficients 
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(effects a and b in Figure 3B and Table 1) running between Y1 and Y2. In M1, the 
loop causal effect of Y2 on Y1 is not 0.715, but includes the effect of Y1 on Y2 of 
0.084 as an indirect effect, and thus (0.715*0.084)=0.06. To calculate this effect 
as a percentage, take 1/(1 – Y1* Y2) = 1/(1 – 0.06) = 1.064 = the original amount 
plus 6.4% (Paxton, Hipp, & Marquat-Pyatt, 2011). One cycle through the feedback 
loop produces about 6.4% of the endogenous variables’ covariance15. To this loop 
causal effect we may apply a Sobel-like test revealing a significance score (z-value) 
of 0.13116. Interpretation is identical to a t-test making this statistic non-significant, 
which is not surprising given that the coefficients are not significant. Normally, 
another cycle would recover an additional 6% of 6% of the original covariance and 
so forth. In SFMs, there is no perpetual looping effect. One loop is the theoreti-
cally specified ‘number of cycles’ for the SFM (Hayduk, 2009). The ideal model 
M3 has a loop causal effect of 2.25% (=0.03*0.75), lower than the 6% found in M1, 
but offering the best theoretical loop causal effect from this research based on fit 
diagnostics.

The loop causal effect only offers the amount of unique covariance explained 
by the loop. The remainder may be of interest to the researcher; however, the 
amount of explained variance of Y1 and Y2, like their path coefficients, are recip-
rocally related17. The error of either Y variable actually contains part error and 
part non-error coming directly from the other endogenous variable’s error and thus 
violating the definition of error in OLS regression. The non-error part is not a com-
ponent of the theory underlying the model, but an implication of the feedback loop. 

Hayduk (2006) proposes a re-specification of r2 to resolve this problem called 
the blocked-error-r-square (beR2). Perfectly appropriate for SFMs, it equals the per-
centage of variance explained by the model when excluding the other error term 
as predictor (i.e., the non-error). The beR2 in M2 is (0.517/0.959=) 0.539 or 53.9% 
for Y1 and (9.887/22.366=) 44.2% for Y2, and for M3 the values are 56.1% for Y1 
and 41.7% for Y2 (see A3-Appendix Three). The results say little about differences 
between the models; in fact, they point out that modeling two very different theoret-

15	 The formula accounts for situations with opposite signed coefficients, or coefficients 
greater than one. As in any statistical model, all indirect effects should be calculated 
from unstandardized coefficients, thus the loop causal effect is (0.148*0.403)=0.06. 
Although the causal effect should be identical regardless of calculation method, always 
rely on unstandardized (‘metric’) coefficients.

16	 The standard error (SE) of loop causal effect (where the two causal paths a and 
b from Figure 3B are subscripted and normal font “b” is a metric coefficient) is: 

2 2 2 2  ab a a b bSE b SE b SE= + ; the significance test is then /  a b abb b SE .
17	 Although beyond the scope here, it is interesting to think about the direction of this 

residual covariance. In infinite looping cycles, a negative covariance approaches zero 
while a positive covariance explodes towards infinity. In the SFM, there is only one 
cycle, but there is an implied force of direction suggesting that unobserved causes push 
away from equilibrium (positive) or towards it (negative).
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ical perspectives leads to similar explained variances. Given the small sample-size-
to-variables-ratio, it is not surprising that these models explain so much variance. 

I did not discuss this in Breznau (2017), that simultaneous feedback accounts 
for just over 2% of the joint distribution of public opinion and social spending. 
This would be trivial in standard r-square logic, but this is literally the explained 
variance unique to the loop itself. The feedback loop is like its own independent 
variable explaining variance in Y1 and Y2. Moreover, this begs the question: what is 
the loop? It represents the simultaneous impact of public opinion and social policy 
on one another. This simultaneity occurs in roughly one-year observation windows. 
Adding more observations should not change this if the loop is stationary at equi-
librium. Therefore, disturbances to opinion or policy at best impart a 2% shift in 
the distribution of opinion and policy. If speaking in terms of majority elections 
this could make the difference in outcomes. In terms of social spending, this would 
impart an increase of 60 units (Dollars, Euro, Yen, etc) if a social benefit provides 
3,000 units for something (pension, unemployment, etc). These potential outcomes 
suggest 2% may be non-trivial.

Further Considerations
Estimators

The task of the estimator is to identify what results most closely fit the implied 
covariance matrix to the observed covariance matrix (Myung, 2003). The most 
common estimator for this task is maximum likelihood (ML), or one of its many 
variants. In econometrics instrumental variables estimation often involves two- or 
three-stage least squares (2SLS or 3SLS) estimators. For SFMs, ML is the least 
biased estimator because it takes into consideration all information in the system 
(i.e., both equations) simultaneously. However, misspecification can lead ML to 
larger bias than 2SLS under some conditions (Paxton et al., 2011). This potential 
tradeoff suggests that the researcher may gain from running sensitivity checks with 
2 or 3SLS to identify misspecification (Kirby & Bollen, 2009), but should not use 
the results because they are counter to a theory of simultaneity. 2SLS violates the 
assumption that the errors are correlated (m in Figure 3) because it removes the 
error through instrumental variable stages. However, as noted long ago by econo-
mists, any adjustment to one outcome variable or its error term feeds back into the 
other and estimating the equations separately misses this process (Hausman, 1983, 
p. 194; Pearl, 2015).

The key is whether unobserved causes (and effects) are randomly distributed 
with respect to the reciprocally causal relationship of Y1 and Y2. If they are not, 
then the researcher can have little faith in the estimation of a and b in Figure 3, 
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and should reconsider the formal model rather than worrying about estimators. The 
default in all three software packages and the default for researchers should be ML. 

Disequilibrium

If there are meaningful changes in the size or direction of a causal force during 
the observation period, then SFMs may not be the appropriate tool. Kaplan, Harik 
and Hotchkiss (2001) demonstrate some risks associated with estimation under 
disequilibrium. They simulated different systems that experienced a shock before 
moving back to equilibrium. They took cross-sections out of the data series to esti-
mate SFMs to test the severity of violating the equilibrium assumption. Their find-
ings reveal that both regression coefficients representing the causal effects between 
endogenous variables (c.f., Y1 and Y2 herein) change somewhat dramatically as the 
system goes from the shock toward its equilibrium point. The error terms follow 
a similar pattern. The change in size of coefficients is gradual and smooth in the 
case of systems that move toward equilibrium without major fluctuations; however, 
when simulating a system with big oscillations the changes to the regression coef-
ficients are sporadic if not chaotic. In either case, the problem is non-ignorable.

A researcher could mistakenly estimate model Figure 2A when in fact the 
correct model is 2D wherein Y1,t-i shapes Y1,t-1 which leads to a new cycle of effects 
between Y1 and Y2, and then Y1,t-1 takes on an entirely new causal effect on Y1,t 
because of whatever transpired in the first loop (arrows between Y1 and Y2) at t-1. 
This means that the model is cyclically recursive instead of nonrecursive (Billings 
& Wroten, 1978). Unfortunately, it is not possible to test for equilibrium, because 
the data needed for such a test are missing by definition. This leaves a strong bur-
den on the researcher to argue for equilibrium. In the case of macro-comparative 
survey research, useful arguments may arise based on stable political and cultural 
systems. For example, the welfare states of Western Europe show a strong degree 
of stability in their political systems after the 1950s; whereas the Communist states 
of Eastern Europe broke down and experienced the shock of market transition in 
the 1990s. 

In cross-sectional survey data, there are somewhat random assortments of 
countries and time-periods available, case-in-point are ISSP data. If the effects and 
system are truly at equilibrium, then it does not matter what random assortment of 
country-time-points are in the analysis. All should reveal the same effects. Subdi-
viding the sample, it is possible that the timing of surveys provides a sensitivity test. 
I demonstrate this by splitting the data into all observations prior to 1998 (Group 
1) and all those 1998 and later (Group 2) (see Appendix 1-Table A8 for covari-
ances). I run M2 and M3 separately on the split data. Table A9 reveals that M3 is 
still preferable to M2 in both groups, and that most effects follow similar patterns 
between the groups. However, the models do not fit nearly as well as when run on 
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the pooled data – as seen from a few basic fit indices. Nonetheless, the 2χ  p-value 
from the exact fit tests passes and it appears reasonable that effects are stable over 
time, for all non-missing years. The very small sample sizes are likely to blame for 
the troubling other indicators. I compare implied covariance matrices for M3 in 
Appendix 1-Table A10. Here the main test variables in the model (involving IV1, 
IV2, Y1 and Y2) carry similar implied covariances across the two groups. A potential 
problem is X4 (unemployment), which switches signs for some of the covariances 
between the groups. This is evidence that further consideration should be given to 
this variable in future research to see if it is disrupting the stability of the system. 
Also, maybe there was a slightly different size of effects in Group 1 given the model 
fits the Group 2 data better; although, much more work is necessary here. This 
sensitivity analysis does not guarantee stability, and although this procedure is not 
an established method, it follows the art of structural equation modeling to pay 
detailed attention to model diagnostics. 

Other Concerns

Missing values. Strictly speaking missing values should be dealt with in the estima-
tion of the model as opposed to imputing them separately as if they were observed 
values. The reason for this is that missing values are subject to special measurement 
error and ignoring this can produce misleading results. However, contextual-level 
data are not observations in the strict sense of the word. Values for gross domestic 
product or level of democracy for example stem from complex calculations whose 
inputs are not necessarily identical across societies. Researchers at organizations 
such as the OECD take painstaking efforts to make these values as identical as pos-
sible. These values do not represent objective qualities of societies in the way that 
observed variables such as age or height represent objective features of individuals. 
Contextual variables are instead more abstract. If they are missing it is best to take 
the nearest available year. The SFM is not suited for imputing values because of 
endogeneity. 

Aggregation and Comparison. Survey data come from micro-level observa-
tions, but macro-comparative researchers aggregate them in some way. Researchers 
should identify population averages, and then use weights and appropriate mea-
surement models, perhaps performing aggregation in several ways as sensitivity 
analyses. Monte Carlo simulations suggest that idiosyncratic research practices 
related to weighting and measurement easily impact results in small-N studies 
(Breznau, 2016). Furthermore, in order to meaningfully use comparative survey 
data, all questions need the same cognitive meaning in each socio-cultural context 
(Davidov et al., 2014). Researchers should establish measurement invariance before 
using survey data, and correct for measurement error using a measurement model 
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and predicted latent scores that account for differential item functioning when there 
are three or more scale variables. In this example, previous research suggests mea-
surement invariance of the two ISSP questions (Andreß & Heien, 2001)18. Given 
that there are only two items, the loadings are equal. Thus, a predicted ‘factor’ is 
identical in variance with simply taking their mean as I did here. 

Estimation without instruments. Several authors suggest estimating IV models 
without observed instrumental variables. Theoretically speaking this violates the 
exclusion restriction. These methods include estimating a latent or model-implied 
instrumental variable, or finding a subgroup of the total sample where a researcher 
can identify a causal instrument (Bollen, Kolenikov, & Bauldry, 2014; Ebbes et al., 
2005; Heckman, Urzua, & Vytlacil, 2006; Heckman & Vytlacil, 1999). Suffice to 
say it is possible but not recommended.

Nonlinear models. If the endogenous variables are non-linear, SFMs are still 
possible using alternative regression estimation techniques. Simply resorting to lin-
ear probability models may introduce new forms of bias (Finch & French, 2015; 
Terza, Bradford, & Dismuke, 2008)

Conclusion
This excursus shows that data limitations of macro-comparative research are not 
always a burden. With a theory of sub-yearly causal timing, scholars need not 
automatically reject cross-sectional survey data as a source for investigating their 
hypotheses. There are many theoretical forms of reciprocal causality for this. The 
simultaneous feedback model is only one form. Awareness of this method is not a 
sufficient condition to use it. Every step in the process of modeling simultaneous 
feedback must have theoretical argumentation behind it. Theory is a necessary con-
dition for employing a simultaneous feedback model. Without a theory to specify 
the model, there is no identification of the reciprocal effects and probably no identi-
fication of the model. Instrumental variables do not appear through random chance 
or out of thin air. Perhaps those normally running a bunch of correlations or regres-
sions and then trying to explain the results may learn something from simultaneous 
feedback modeling, because theory is not ‘optional’ (Kalter & Kroneberg, 2014).

The impetus for bringing light to this method is the fact that so many macro-
comparative phenomena in survey research appear to have reciprocal causality, and 
the forms of causality are highly complex and unfold in imprecise moments in 
time. There are well established methods, for example cross-lagged, fixed-effects/
random-slope, error correction and vector autoregressive models for fitting longitu-

18	 Others find similar questions to be measurement equivalent in the ESS (Roosma, van 
Oorschot, & Gelissen, 2014)
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dinal models. Given the correct research design it is possible to integrate simultane-
ous feedback in a longitudinal model (Geweke, 1982) like an extension of Figure 
2D. Whether or not simultaneous feedback can capture both lagged and instanta-
neous processes is a theoretical consideration, one limited by available data. The 
loop causal effect from a SFM may then impact other outcomes (Hayduk, 1987). 
The loop itself acts as an independent ‘variable’ or a causal force, a consideration 
that researchers hopefully take away from this excursus. 

There are limitations. Although data derive from individual-level sources, I 
am not aware of the possibility to model a SFM using multi-level techniques nor 
individual-level measurement models. Ideally, a measurement model is integrated 
into a path model for a fully parsimonious structural equation model. This would 
have a single variable for each survey item and their relationship with the latent 
scale (here public opinion), and it would have two levels of data analysis. Lacking 
degrees of freedom prevents the former, and a peculiarity of the SFM prevents the 
latter. The loop only exists at the aggregate level because there is no individual-
level variance in social policy. Moreover, public opinion is by definition a group-
level phenomenon, meaning strictly macro-level. 

Theories germane to simultaneous feedback come in two broad types and 
both are debatable, so that researchers should use caution. The first type is where 
forces act upon each other simultaneously in the real world. The possibility of this 
is a philosophical argument. Some argue that by definition there are actions and 
reactions in the world, or that all things are reactions to other things. Meanwhile 
others argue that it is the interaction of objects and actions at the same point in 
time that constitute causal effects (Mulaik, 2009). Although this paper takes no 
philosophical position, researchers working with SFMs are by definition stepping 
on philosophical ground and tapping into debates that stretch throughout the his-
tory of social thought. Thus, awareness of these arguments should help researchers 
defend themselves against epistemological attacks. The second type suggests that 
simultaneous causality exists without theoretically simultaneous forces, but can be 
inferred because the window of observation – usually something around a year 
in surveys – contains enough bi-directional causal forces between two phenom-
ena that it is logical to treat them as simultaneously causal. This means that even 
though all these effects may run in different directions and have different sizes, 
that there is a sum or total effect in their causal loop force that is of theoretical and 
empirical interest. 

Although simultaneity across many countries is an interesting comparative 
perspective to take and test, researchers more often think of comparative research 
as looking for differences. As my sensitivity analysis in A3-Appendix Three shows, 
I can compare two different groups in the data, analogous to a moderation analysis. 
There are theories that opinion and policy will have different sized effects depend-
ing on the institutional context (Wlezien & Soroka, 2012), and this presents an 
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exciting avenue for future implementation of simultaneous feedback in macro-com-
parative survey data in general and specifically in the opinion-policy case.
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Appendix 1: Additional Tables

Table A1	 Public Opinion and Social Policy Covariance Structure Dataa

Y1 Y2 X1 X2 X3 X4 IV1 IV2

Means 0.085 21.370 14.830 0.150 7.300 25.600 52.000 0.348

Variance 0.976 22.658 4.537 0.040 13.764 26.936 53.729 0.022

  Standard Deviations 0.988 4.760 2.130 0.200 3.710 5.190 7.330 0.149

variable label Y1 Y2 X1 X2 X3 X4 IV1 IV2

c 
o 

r r
 e

 l 
a 

t I
 o

 n
 s

Public Opinion Y1 1.000

Social Spending Y2 0.348 1.000

Aged X1 0.413 0.532 1.000

Right X2 -0.141 -0.193 0.052 1.000

Unemp. X3 0.294 0.128 0.017 0.004 1.000

GDP X4 -0.405 0.041 0.082 -0.140 -0.525 1.000

FLP IV1 -0.527 0.003 -0.030 -0.164 -0.585 0.572 1.000

Veto IV2 -0.068 -0.199 0.053 -0.013 -0.064 0.175 -0.191 1.000

variable label Y1 Y2 X1 X2 X3 X4 IV2 IV1

c 
o 

v 
a 

r i
 a

 n
 c

 e
 s

Public Opinion Y1 0.976

Social Spending Y2 1.638 22.658

Aged X1 0.869 5.397 4.537

Right X2 -0.028 -0.184 0.022 0.040

Unemp. X3 1.077 2.253 0.003 0.130 13.764 

GDP X4 -2.076 1.015 -0.145 0.902 -10.117 26.936

FLP IV1 -3.818 0.098 -0.241 -0.470 -15.895 21.772 53.729

Veto IV2 -0.010 -0.141 0.000 0.017 -0.035 0.136 -0.209 0.022

a Taken from Breznau (2017).
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Table A2	 Variable Names and Definitionsa

Name  Type  Measurement  Source

Public Opinion Endogenous Dependent 
Variable

Two-item scale from 
respondents level of agrre-
ment with the responsibility 
of government to provide 
jobs and reduce income 
differences.

ISSP Role of 
Government 
(I,II,III,&IV) and 
Religion (I&II) 
modulesb

Social Spending Endogenous dependent 
variable measuring 
Social Policy

The amount of spending 
on social policy provisions, 
mostly pensions, employ-
ment, unemployment, and 
health care expressed as a 
percentage of GDP in the 
same year.

OECD (2012); also 
known as “SOCX”

Aged Independent variable Percent of the population 
over age 64.

OECD Social 
Indicators Data

Right Independent variable Percent of national govern-
ment seats held by right 
parties.

Svennson et al. 
(2012); Quality of 
Government Data

Unemp. Independent variable Percent of the labor force 
that is unemployed.

OECD Social 
Indicators Data

GDP Independent variable Gross Domestic Product 
at PPP.

OECD Social 
Indicators Data

Female LFP Instrument for  Public 
Opinion

Percent of the total female 
population in the labor 
force.

OECD Social 
Indicators Data

Veto Points  Instrument for both 
Social Policy variables

 A scale of institutional 
measures for the amount of 
chances a policy has to be 
vetoed. Based on the work 
of Lijphart (1999).

 Svennson et al. 
(2012); Quality of 
Government Data

a This Table is copied from Table 1 in Breznau (2017). See original article for full cita-
tions. All variables are measured simultaneously at the current year of the endogenous 
variables.

b Country-time points are: Australia (‛86,‘90,‘93,‘97,‘98,‘07), Austria (‛86,‘93,‘98), 
Canada (‛96,‘00,‘06), Denmark (‛98,‘08), Finland (‛06), France (‛97,‘98,‘06), Ger-
many (‛86,‘90,‘91,‘96,‘98,‘06), Ireland (‛91,‘96,‘98,‘06), Italy (‛86,‘90,‘96,‘99), Japan 
(‛96,‘98,‘06), the Netherlands (‛91,‘98,‘06), New Zealand (‛91,‘97,‘98,‘06), Norway 
(‛90,‘91,‘96,‘98,‘06), Portugal (‛99,‘06), Spain (‛96,‘98,‘07), Sweden (‛96,‘98,‘06), 
Switzerland (‛98,‘99,‘07), Great Britain (‛86,‘90,‘91,‘96,‘98,‘06), the United States 
(‛86,‘90,‘91,‘96,‘98,‘06).
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Table A4	 Results from Separate Unidirectional Regressions

Y1 (public opinion) ON b s.e. β

Y2 (social policy) 0.029 0.020 0.141
X1 (aged) 1.789 0.475 0.362
X2 (right) -0.117 0.039 -0.252
X3 (GDP) -0.044 0.028 -0.165
X4 (unemp) -0.053 0.019 -0.280
IV1 (FLP) -0.067 0.015 -0.495

var(e.Y1) 0.423 0.072 0.441

Y2 (social policy) ON
Y1 (public opinion) 0.559 0.581 0.116
X1 (aged) 11.721 2.573 0.492
X2 (right) -0.417 0.217 -0.187
X3 (GDP) 0.184 0.140 0.144
X4 (unemp) 0.127 0.114 0.138
IV2 (veto) -7.494 2.986 -0.235

var(e.Y2) 13.197 2.231 0.591
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Table A7	 Non-Zero Modificaiton Indices

Freed parameter M2 M3

Y1 ON Y2 4.374 2.609

Y1 ON IV2 4.374 2.609

Y1 ON Y1 4.374a 2.609a

Y2 ON Y1 0.745 0.034

Y2 ON IV1 0.745 0.034

Y2 ON Y2 0.745a 0.034a

Note. “ON” refers to regression coefficients
a Variable regression on itself is a statistical artifact of having  

structural equations (see text).
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Table A9	 Testing Equilibrium Comparing Results by Group

M2 M3

Group 1 (< 1998) Group 2 (1998 +) Group 1 (< 1998) Group 2 (1998 +)

var b s.e β   b s.e β   b s.e β   b s.e β

Y1 ON

Y2 -0.010 - - -0.049 -0.010 - - -0.050 0.030 - - 0.150 0.030 - - 0.146

X1 0.330 0.047 0.632 0.116 0.055 0.278 0.275 0.040 0.534 0.069 0.054 0.162

X2 -0.767 0.435 -0.157 -1.675 0.722 -0.315 -0.681 0.374 -0.142 -1.416 0.707 -0.262

X3 -0.016 0.026 -0.073 -0.027 0.054 -0.089 -0.021 0.022 -0.098 -0.051 0.053 -0.166

X4 -0.052 0.035 -0.193 -0.039 0.027 -0.226 -0.057 0.031 -0.215 -0.041 0.027 -0.234

IV1 -0.079 0.014 -0.585 -0.081 0.031 -0.504 -0.076 0.013 -0.569 -0.089 0.030 -0.549

Y2 ON

Y1 1.500 - - 0.306 1.500 - - 0.302 0.750 - - 0.150 0.750 - - 0.155

X1 0.895 0.335 0.350 1.122 0.277 0.539 1.154 0.341 0.448 1.201 0.266 0.583

X2 -1.960 3.213 -0.082 -5.746 3.369 -0.217 -3.206 3.276 -0.133 -6.519 3.244 -0.249

X3 0.138 0.187 0.126 0.425 0.228 0.282 0.137 0.190 0.125 0.455 0.219 0.305

X4 0.368 0.246 0.277 0.318 0.140 0.366 0.325 0.251 0.243 0.265 0.134 0.309

IV1 -7.442 5.128 -0.216 -8.314 4.211 -0.274 -10.944 5.291 -0.315 -7.897 4.043 -0.263

e.Y1 0.253 0.060 0.243 0.494 0.118 0.547 0.187 0.045 0.185 0.476 0.114 0.512

e.Y2 13.250 3.231 0.532 11.875 2.839 0.532 13.752 3.290 0.544 11.008 2.632 0.504

RMSEA 0.261 0.170 0.177 0.080

CFI 0.934 0.943 0.969 0.987

Exact p   0.034     0.134     0.123     0.295  



307 Breznau: Simultaneous Feedback Models

Table A10	 Implied Covariance Matricies for M3 by Group 

Group 1 (< 1998)

var Y1 Y2 X1 X2 X3 X4 IV1 IV2

Y1 1.009

Y2 2.610 25.275

X1 1.085 5.512 3.808

X2 -0.036 -0.135 0.002 0.044

X3 1.798 3.457 0.125 -0.191 20.987

X4 -1.296 1.591 1.797 -0.062 -10.711 14.131

IV1 -4.981 -1.630 0.265 0.136 -18.010 17.133 56.940

IV2 -0.009 -0.124 0.027 -0.007 -0.179 0.259 0.079 0.021

Group 2 (1998 +)

var Y1 Y2 X1 X2 X3 X4 IV1 IV2

Y1 0.928

Y2 1.590 21.831

X1 0.728 5.768 5.148

X2 -0.019 -0.147 0.082 0.032

X3 1.173 4.509 1.658 0.041 9.836

X4 -2.522 -3.017 -2.382 -0.016 -9.040 29.578

IV1 -3.188 -5.018 -3.414 -0.298 -12.443 17.113 35.381

IV2 -0.009 -0.066 0.069 0.005 0.022 0.266 -0.082 0.024

Appendix Two and Three
Appendix Two and Three, A2 and A3 available at https://osf.io/gyz6p


