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Cluster Size and Aggregated Level 2 
Variables in Multilevel Models. 
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Abstract
This paper explores the consequences of small cluster size for parameter estimation in mul-
tilevel models. In particular, the interest lies in parameter estimates (regression weights) in 
linear multilevel models of level 2 variables that are functions of level 1 variables, as for 
instance the cluster-mean of a certain property, e.g. the average income or the proportion of 
certain people in a neighborhood. To this end, a simulation study is used to determine the 
effect of varying cluster sizes and number of clusters. The results show that small cluster 
sizes can cause severe downward bias in estimated regression weights of aggregated level 2 
variables. Bias does not decrease if the number of clusters (i.e. the level 2 units) increases. 
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1	 Introduction
Multilevel models (also known as hierarchical linear models and mixed models) 
are a common statistical tool for the analysis of clustered data (De Leeuw, Meijer, 
& Goldstein, 2008; Langer, 2010; Rabe-Hesketh & Skrondal, 2012; Raudenbush 
& Bryk, 2002; Snijders & Bosker, 2012). Their advantages are obvious: instead of 
treating observations incorrectly as unrelated, they explicitly take the clustering of 
observations into account and allow for modeling how characteristics of the higher 
level impact units at the lower level – for example, how neighborhood characteris-
tics affect residents or how school characteristics affect students.

It is common in multilevel modeling to aggregate level 1 information to gener-
ate level 2 information, i.e. to characterize the clusters in which the lower level 
units are nested. For instance, the proportion of immigrant children in schools, 
the proportion of unemployed respondents in neighborhoods, the average income 
in neighborhoods and similar measures are frequently used in multilevel analysis 
(Fauth, Roth, & Brooks-Gunn, 2007; Gross & Kriwy, 2013; Pong & Hao, 2007; 
Schunck & Windzio, 2009; Windzio, 2004; Windzio & Teltemann, 2013). 

In multilevel analysis cluster means are frequently assumed to have a meaning-
ful interpretation, which is substantively different from the level 1 variables from 
which they are calculated. For instance, the mean household income in a neigh-
borhood may be seen as a measure of neighborhood quality.1 This paper investi-
gates how level 1 sparseness, that is having few observations per cluster, affects the 
estimation of the regression weights of such aggregated level 2 variables in linear 
multilevel models.

Level 1 sparseness is not uncommon in empirical research. Research is often 
confronted with data that is of a hierarchical nature but contains only few observa-
tions per cluster. This is common in surveys that follow stratified sampling designs, 
where only few respondents are clustered in geographical units (Clarke & Whea-
ton, 2007; Schunck & Windzio, 2009). 

Questions regarding adequate sample sizes at each level in multilevel analysis 
have been discussed before (Bell, Ferron, & Kromrey, 2008; Clarke, 2008; Clarke 

1	 This sets multilevel modeling apart from longitudinal modeling in which such be-
tween-effects are often considered of having no meaningful interpretation (Allison, 
2009; Schunck, 2013).
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& Wheaton, 2007; Hox, 1998; Kreft, 1996; Maas & Hox, 1999, 2005). Prior research 
suggests that level 1 sparseness does not lead to serious bias in parameter estimates 
(Bell et al., 2008; Clarke, 2008; Clarke & Wheaton, 2007; Maas & Hox, 2005). The 
number of clusters (level 2 units) seems to be more important than the number of 
observations per cluster. However, previous research has not systematically investi-
gated how small sample sizes at level 1 impacts the estimates in multilevel models 
if these models include aggregated level 2 variables that are a function of the level 
1 variables. In this case, small cluster size may cause noisy and unreliable aggrega-
tions. This becomes obvious if we consider the reliability of aggregated variables 
in multilevel models. For an aggregated indicator the reliability of the group mean 
can be expressed by 

	 (1)

where 2
Bσ  is the between group-variance of the indicator, 2

Wσ  is the within-group 
variance, and in  is the common cluster size (Snijders & Bosker, 2004, pp. 25-26). 
Reliability increases if the number of level 1 units per cluster increases and reli-
ability decreases when the number of observations per cluster decreases.2 In linear 
models, low reliability will create an error-in-variables problem and will cause an 
attenuation bias (Wooldridge, 2010, p. 81). This study therefore considers the effects 
of very small cluster sizes in linear two-level multilevel models on parameter esti-
mates of regression weights of level 2 variables that are a function of level 1 vari-
ables.

2	 Methods 
To this end, this study uses Monte Carlo simulations, varying a) the cluster size, i.e. 
the number of level 1 units per cluster ( in  = 5, 10, 20, 40, 80) and b) the number of 
level 2 units ( jn  = 20, 40, 100, 1000). The number and size of clusters is chosen to 
include the range of cluster sizes and numbers of clusters typically encountered in 
multilevel modeling – ranging from data with few clusters and relatively large clus-
ter sizes to data with a large number of clusters but very few observations within 
clusters. Very large clusters as in country data are not considered, since the inter-
est lies on level 1 sparseness. Data were generated based on a two-level multilevel 
model specified as

2	 Obviously, reliability also depends on the amount of variance between and within clus-
ters. Reliability is also high when there are large differences between clusters.  
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1 2 3ij ij j j j ijy x c x uα β β β ε= + + + + + 	 (2)

with  i  indicating level 1 and j  indicating level 2. ijx  was generated as continuous 
level 1 covariate from a normal distribution with a mean of 0 and a variance of 1  
( ( ) ~ 0,1ijx N ), jx  is the level 2 covariate that is a function (the cluster mean) of the 
level 1 covariate ijx , and jc  was generated as continuous level 2 covariate from a 
normal distribution with a mean of 0 and a variance of 1 ( ( ) ~ 0,1jc N )3. The level 1 
error was generated from a normal distribution with a mean of 0 and a variance of 1  
( ( ) ~ 0,1ij Nε ) and the level 2 error similarly as ( ) ~ 0,1ju N . The constant was speci-
fied as α  = 1 and the regression weights as 

1β  = 1, 
2β  = 1, and 

3β  = 1. 
To simulate the data generating process more realistically, the data were gener-

ated by assuming that the cluster size ( in ) is 100 in the population. The different 
cluster sizes ( in   =  5,  10,  20,  40,  80) were realized by drawing random samples 
out of the population clusters. This corresponds for instance to drawing random 
samples of residents out of larger neighborhoods or students out of schools. This 
has important and intended consequences of the cluster mean. While the true clus-
ter mean jx  is used to generate the data (2), the multilevel model used to analyze 
the data relies on the estimate '

jx  from the cluster samples. 
For each of the 20 conditions (5 cluster sizes * 4 different numbers of level 2 

units), 1,000 data sets were simulated using Stata 13.1 (StataCorp, 2013). After data 
generation, the simulated samples were analyzed using a linear two-level multi-
level model. The examined outcomes were the estimated fixed effects, that is the 
regression coefficients 

1β̂ ,
2 β̂ , and

3 β̂  under the specified conditions. Bias in param-
eter estimates is indicated by the percentage relative bias, which is assessed as  
( ( )ˆ /  β β β−  * 100) (Maas & Hox, 1999). For instance, if the true parameter is β  = 1 
and the estimated parameter is β̂  = 1.5, this leads to (1.5 – 1)/1 * 100 = 50, indi-
cating the estimated parameter is upward biased by 50%. If β̂  = 0.5, this leads to 
(0.5 – 1)/1 * 100 = -50, indicating that the estimated parameter is biased downward 
by 50%. 

3	 Results
The results of the simulation for the linear two-level multilevel model are presented 
in Table 1 and in Figures 1, 2, and 3. 

The results show that there are very low levels of bias in the estimates of 
1β̂ , 

the regression weight associated with the level 1 variable ijx  (Table 1). Even under 

3	 Note that since a proportion is a special case of a mean, the results extend to dichoto-
mous level 1 variables, which for instance classify observations according to a binary 
characteristic.
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extreme conditions ( in  = 5 and jn  = 20), the estimated regression weights were 
very close to the true value. This is also apparent from Figure 1, which displays the 
mean percentage relative bias in 

1β̂ . In all conditions, the percentage relative bias 
is below +/- 1%. Bias decreases on average if the cluster size or if the number of 
clusters increases, as can be seen from Figure 1. As regards the estimate 

2β̂  – the 
regression weight associated with the level 2 variable jc – the results similarly show 
only insubstantial bias in the estimates (Table 1). Again, the percentage relative 
bias does not exceed +/- 1% in any condition (Figure 2). Bias decreases further 
when the number of level 2 units increases (Figure 2). Accordingly, for both 

1β̂  and 

2β̂  bias caused by level 1 sparseness appears negligible. 
However, the results show a strikingly different picture when it comes to the 

estimate of 
3β̂ , the regression weight associated with the cluster mean '

jx . Again, 
the true value for the parameter was set to equal 1. If the cluster size is very small 
( in  = 5), the estimated regression weights show an extreme downward bias being 
close to zero (Table 1). Bias decreases when the size of the clusters increases – from 
an average percentage relative bias of -95.25% in the condition of extreme level 
1 sparseness ( in  = 5) to -21.20% if the clusters comprise 80 level 1 observations  
( in  = 80) (Figure 3). Even with moderate cluster sizes, i.e. in  = 40, the average per-
centage relative bias is still -59.94. Importantly, bias does not decrease if the num-
ber of clusters increases. The number of level 2 units ( jn  = 20, 40, 100, 1000) is not 
statistically significantly related to the size of the bias ( in  = 5: F (3, 3996) = 0.15, 
p<0.932; in  = 10: F (3, 3996) = 0.65, p<0.582; in  = 20: F (3, 3996) = 0.39, p<0.759; 

in  = 40: F (3, 3996) = 0.84, p<0.474; in  = 80: F (3, 3996) = 0.13, p<0.9446).
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Figure 1	 Percentage relative bias in 1β̂
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4	 Conclusions
The results of this study show that level 1 sparseness (i.e. small cluster size) in 
multilevel models can cause large bias in estimated regression weights of level 2 
variables that are aggregated from level 1 variables. 

To assess the effect of level 1 sparseness, this study simulated multilevel data 
varying the number and the size of clusters and analyzed the data to evaluate the 
impact of level 1 sparseness on the estimated regression weights. The number and 
size of clusters had relatively little impact on the estimated effect of regression 
weights of normal level 1 and level 2 variables. In this respect, this study links up 
with previous research (Bell et al., 2008; Clarke, 2008; Clarke & Wheaton, 2007; 
Maas & Hox, 1999, 2005). 

However, if multilevel models include level 2 variables that are a function of the 
level 1 variables, e.g. the average income or the proportion of unemployed people 
in a neighborhood, the study found severe downward bias in estimated regression 
weights. In situation of extreme level 1 sparseness, that is if the clusters comprise 
only 5 or 10 observations, the average percentage relative bias was more than 93%. 
Importantly, bias does not decrease if the number of level 2 units increases. Bias 
reduces if the number of observations within each cluster increases. However, even 
with moderate cluster sizes (20 or 40 observations per cluster), bias is still substan-
tial. 

What is the reason for such bias? Reliability of aggregated variables depend on 
cluster size (Snijders & Bosker, 2004, pp. 25-26). If very few level 1 units are used 
to generate the level 2 characteristic, we are dealing with measurement error: The 
(aggregated) level 2 characteristic is a noisy estimate of the true level 2 characteris-
tic. It is a well-known fact that error-in-variables causes attenuation (i.e. downward) 
bias in estimated regression weights in linear models (Wooldridge, 2010, p. 81). 
The problem we are therefore facing is a measurement error or error-in-variables 
problem, respectively. 

We have to assume that this is a prevalent problem. Most multilevel data 
comprise samples of level 1 units drawn out of a population of level 2 units, e.g. 
respondents living in larger neighborhoods, students attending different schools, or 
employees working in different establishments. In all these data, estimated effects 
of aggregated level 2 variables will be biased downward. 

Obviously, the problem only applies if the clusters are samples. If the multilevel 
data comprises the full clusters, i.e. if all observations within a cluster are included, 
such as all students nested in a class, the problem will not apply – even if the clus-
ters are small.

What can be done about this? The first and most obvious remedy is to increase 
the (relative) size of the clusters. The larger the number of level 1 units per cluster, 
the lower is the bias. A second remedy is to use external data sources to generate the 
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aggregated level 2 characteristics. For instance, administrative data may be used to 
complement survey data with the level 2 variables of interest. A third remedy lies 
in methods that adjust for measurement error. Measurement error can, for instance, 
be accommodated by using a latent variable approach (Bollen, 1989; Reinecke & 
Pöge, 2010; Skrondal & Rabe-Hesketh, 2003). This would require using multiple 
level 1 indicators to model the (latent) level 2 characteristic. For instance, neighbor-
hood characteristics could be assessed by relying on several measures, e.g. (mean) 
income, (mean) education, (proportion of) unemployment, etc. While these three 
potential remedies appear promising, one may still encounter situations in which 
none is applicable and should therefore treat aggregated variables in multilevel 
models with caution. 

References
Allison, P. D. (2009). Fixed effects regression models. Los Angeles: SAGE.
Bell, B. A., Ferron, J. M., & Kromrey, J. D. (2008). Cluster size in multilevel models: the 

impact of sparse data structures on point and interval estimates in two-level models. 
JSM Proceedings, Section on Survey Research Methods, 1122-1129. 

Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.
Clarke, P. (2008). When can group level clustering be ignored? Multilevel models versus 

single-level models with sparse data. Journal of Epidemiology and Community Health, 
62(8), 752-758. 

Clarke, P., & Wheaton, B. (2007). Addressing data sparseness in contextual population re-
search using cluster analysis to create synthetic neighborhoods. Sociological Methods 
& Research, 35(3), 311-351. 

De Leeuw, J., Meijer, E., & Goldstein, H. (2008). Handbook of multilevel analysis: Springer.
Fauth, R. C., Roth, J. L., & Brooks-Gunn, J. (2007). Does the neighborhood context alter 

the link between youth’s after-school time activities and developmental outcomes? A 
multilevel analysis. Developmental Psychology, 43(3), 760. 

Gross, C., & Kriwy, P. (2013). Einfluss regionaler sozialer Ungleichheits- und Arbeitsmarkt-
merkmale auf die Gesundheit. 

Hox, J. (1998). Multilevel modeling: When and why Classification, data analysis, and data 
highways (pp. 147-154): Springer.

Kreft, I. G. (1996). Are multilevel techniques necessary? An overview, including simulation 
studies: California State University Press, Los Angeles.

Langer, W. (2010). Mehrebenenanalyse mit Querschnittsdaten. In C. Wolf & H. Best (Eds.), 
Handbuch der sozialwissenschaftlichen Datenanalyse (pp. 741-774). Wiesbaden: 
Springer.

Maas, C. J., & Hox, J. J. (1999). Sample sizes for multilevel modeling. American Journal of 
Public Health, 89, 1181-1186. 

Maas, C. J., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodo-
logy, 1(3), 86-92. 

Pong, S. l., & Hao, L. (2007). Neighborhood and School Factors in the School Performance 
of Immigrants’ Children1. International Migration Review, 41(1), 206-241. 



methods, data, analyses | Vol. 10(1), 2016, pp. 97-108 106 

Rabe-Hesketh, S., & Skrondal, A. (2012). Multilevel and longitudinal modeling using Stata 
(3rd ed.). College Station, Tex.: Stata Press Publication.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models. Applications and 
Data Analysis Methods. Thousand Oaks: Sage.

Reinecke, J., & Pöge, A. (2010). Strukturgleichungsmodelle. In H. Best & C. Wolf (Eds.), 
Handbuch der sozialwissenschaftlichen Datenanalyse (pp. 775-804). Wiesbaden: VS.

Schunck, R. (2013). Within- and Between-Estimates in Random Effects Models. Advanta-
ges and Drawbacks of Correlated Random Effects and Hybrid Models. Stata Journal, 
13(1), 65-76. 

Schunck, R., & Windzio, M. (2009). Ökonomische Selbstständigkeit von Migranten in 
Deutschland: Effekte der sozialen Einbettung in Nachbarschaft und Haushalt. Zeit-
schrift für Soziologie, 38(2), 111-128. 

Skrondal, A., & Rabe-Hesketh, S. (2003). Some applications of generalized linear latent and 
mixed models in epidemiology: repeated measures, measurement error and multilevel 
modeling. Norsk epidemiologi, 13(2). 

Snijders, T. A., & Bosker, R. J. (2004). Multilevel Analysis. An Introduction to Basic and 
Advanced Multilevel Modeling. London: Sage.

Snijders, T. A., & Bosker, R. J. (2012). Multilevel analysis. An introduction to basic and 
advanced multilevel modeling (2nd ed.). Los Angeles: Sage.

StataCorp. (2013). Stata: Release 13. Statistical Software. College Station, TX: StataCorp 
LP.

Windzio, M. (2004). Kann der regionale Kontext zur „Arbeitslosenfalle “werden? KZfSS 
Kölner Zeitschrift für Soziologie und Sozialpsychologie, 56(2), 257-278. 

Windzio, M., & Teltemann, J. (2013). Empirische Methoden zur Analyse kontextueller Fak-
toren in der Bildungsforschung Bildungskontexte (pp. 31-60): Springer.

Wooldridge, Jeffrey M. (2010). Econometric analysis of cross section and panel data. (2nd 
edition). Bosten, MA: MIT press.



107 Schunck: Cluster Size and Aggregated Level 2 Variables in Multilevel Models

Appendix
// Stata code

clear all
version 13.1

global data "..."		 // define file path here 

//	 #1
//	 define program

capture program drop l2linear
program define l2linear
	 clear
	 drop _ all
	 args i j
	 set obs 'j'
	 gen j = _ n
	 gen c _ j = rnormal(0,1)
	 gen u _ j = rnormal(0,1)
	 expand 100
	 bysort j: gen i = _ n
	 gen x _ ij = rnormal(0,1)
	 bysort j: egen x _ j = mean(x _ ij)
	 gen e _ ij = rnormal(0,1)
	 gen y _ ij = 1 + 1*x _ ij + 1*c _ j + 1*x _ j + u _ j + e _ ij
	 bysort j: sample 'i', count
	 bysort j: egen x _ j _ noise = mean(x _ ij)
	 xtreg y _ ij x _ ij x _ j _ noise c _ j, i(j) re
end

//	 #2
//	 simulate

foreach j of numlist 20 40 100 1000 {
	 foreach i of numlist 5 10 20 40 80 {
		
		  simulate _ b, seed(12345) reps(1000): l2linear 'i' 'j'
		  gen n _ j = 'j'
		  gen n _ i = 'i'
		  sum
		
		  if ('j'==20 & 'i'==5) save "${data}\sim _ linear.dta", replace
		  else	 {
			   append using "${data}\sim _ linear.dta"
			   save "${data}\sim _ linear.dta", replace
			   }
	 }
}
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